表征和建模的能量和能量的极端尺度现场可视化

Vignesh Adhinarayanan, Wu-chun Feng, D. Rogers, J. Ahrens, S. Pakin
{"title":"表征和建模的能量和能量的极端尺度现场可视化","authors":"Vignesh Adhinarayanan, Wu-chun Feng, D. Rogers, J. Ahrens, S. Pakin","doi":"10.1109/IPDPS.2017.113","DOIUrl":null,"url":null,"abstract":"Plans for exascale computing have identified power and energy as looming problems for simulations running at that scale. In particular, writing to disk all the data generated by these simulations is becoming prohibitively expensive due to the energy consumption of the supercomputer while it idles waiting for data to be written to permanent storage. In addition, the power cost of data movement is also steadily increasing. A solution to this problem is to write only a small fraction of the data generated while still maintaining the cognitive fidelity of the visualization. With domain scientists increasingly amenable towards adopting an in-situ framework that can identify and extract valuable data from extremely large simulation results and write them to permanent storage as compact images, a large-scale simulation will commit to disk a reduced dataset of data extracts that will be much smaller than the raw results, resulting in a savings in both power and energy. The goal of this paper is two-fold: (i) to understand the role of in-situ techniques in combating power and energy issues of extreme-scale visualization and (ii) to create a model for performance, power, energy, and storage to facilitate what-if analysis. Our experiments on a specially instrumented, dedicated 150-node cluster show that while it is difficult to achieve power savings in practice using in-situ techniques, applications can achieve significant energy savings due to shorter write times for in-situ visualization. We present a characterization of power and energy for in-situ visualization; an application-aware, architecturespecific methodology for modeling and analysis of such in-situ workflows; and results that uncover indirect power savings in visualization workflows for high-performance computing (HPC).","PeriodicalId":209524,"journal":{"name":"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Characterizing and Modeling Power and Energy for Extreme-Scale In-Situ Visualization\",\"authors\":\"Vignesh Adhinarayanan, Wu-chun Feng, D. Rogers, J. Ahrens, S. Pakin\",\"doi\":\"10.1109/IPDPS.2017.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plans for exascale computing have identified power and energy as looming problems for simulations running at that scale. In particular, writing to disk all the data generated by these simulations is becoming prohibitively expensive due to the energy consumption of the supercomputer while it idles waiting for data to be written to permanent storage. In addition, the power cost of data movement is also steadily increasing. A solution to this problem is to write only a small fraction of the data generated while still maintaining the cognitive fidelity of the visualization. With domain scientists increasingly amenable towards adopting an in-situ framework that can identify and extract valuable data from extremely large simulation results and write them to permanent storage as compact images, a large-scale simulation will commit to disk a reduced dataset of data extracts that will be much smaller than the raw results, resulting in a savings in both power and energy. The goal of this paper is two-fold: (i) to understand the role of in-situ techniques in combating power and energy issues of extreme-scale visualization and (ii) to create a model for performance, power, energy, and storage to facilitate what-if analysis. Our experiments on a specially instrumented, dedicated 150-node cluster show that while it is difficult to achieve power savings in practice using in-situ techniques, applications can achieve significant energy savings due to shorter write times for in-situ visualization. We present a characterization of power and energy for in-situ visualization; an application-aware, architecturespecific methodology for modeling and analysis of such in-situ workflows; and results that uncover indirect power savings in visualization workflows for high-performance computing (HPC).\",\"PeriodicalId\":209524,\"journal\":{\"name\":\"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2017.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2017.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

百亿亿次计算的计划已经确定,功率和能源是在这种规模上运行模拟的迫在眉睫的问题。特别是,将这些模拟生成的所有数据写入磁盘变得非常昂贵,因为超级计算机在空闲等待将数据写入永久存储器时需要消耗能量。此外,数据移动的电力成本也在稳步增加。这个问题的解决方案是只编写生成数据的一小部分,同时仍然保持可视化的认知保真度。随着领域科学家越来越倾向于采用原位框架,该框架可以从极大的模拟结果中识别和提取有价值的数据,并将其作为紧凑图像写入永久存储,大规模模拟将向磁盘提交数据提取的简化数据集,该数据集将比原始结果小得多,从而节省电力和能源。本文的目标是双重的:(i)了解原位技术在应对极端尺度可视化的电力和能源问题中的作用;(ii)创建一个性能、电力、能源和存储的模型,以促进假设分析。我们在一个专用的150节点集群上进行的实验表明,虽然使用原位技术在实践中很难实现节能,但由于原位可视化的写入时间缩短,应用程序可以实现显著的节能。我们提出了一种表征功率和能量的原位可视化;一种应用感知的、特定于体系结构的方法,用于对此类现场工作流进行建模和分析;以及揭示在高性能计算(HPC)的可视化工作流中间接节省电力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing and Modeling Power and Energy for Extreme-Scale In-Situ Visualization
Plans for exascale computing have identified power and energy as looming problems for simulations running at that scale. In particular, writing to disk all the data generated by these simulations is becoming prohibitively expensive due to the energy consumption of the supercomputer while it idles waiting for data to be written to permanent storage. In addition, the power cost of data movement is also steadily increasing. A solution to this problem is to write only a small fraction of the data generated while still maintaining the cognitive fidelity of the visualization. With domain scientists increasingly amenable towards adopting an in-situ framework that can identify and extract valuable data from extremely large simulation results and write them to permanent storage as compact images, a large-scale simulation will commit to disk a reduced dataset of data extracts that will be much smaller than the raw results, resulting in a savings in both power and energy. The goal of this paper is two-fold: (i) to understand the role of in-situ techniques in combating power and energy issues of extreme-scale visualization and (ii) to create a model for performance, power, energy, and storage to facilitate what-if analysis. Our experiments on a specially instrumented, dedicated 150-node cluster show that while it is difficult to achieve power savings in practice using in-situ techniques, applications can achieve significant energy savings due to shorter write times for in-situ visualization. We present a characterization of power and energy for in-situ visualization; an application-aware, architecturespecific methodology for modeling and analysis of such in-situ workflows; and results that uncover indirect power savings in visualization workflows for high-performance computing (HPC).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Capability Models for Manycore Memory Systems: A Case-Study with Xeon Phi KNL Toucan — A Translator for Communication Tolerant MPI Applications Production Hardware Overprovisioning: Real-World Performance Optimization Using an Extensible Power-Aware Resource Management Framework Approximation Proofs of a Fast and Efficient List Scheduling Algorithm for Task-Based Runtime Systems on Multicores and GPUs Dynamic Memory-Aware Task-Tree Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1