基于图像的多帧心脏MRI图像亚秒快速全自动完整心周期左心室分割

Vinayak Ray, Ayush Goyal
{"title":"基于图像的多帧心脏MRI图像亚秒快速全自动完整心周期左心室分割","authors":"Vinayak Ray, Ayush Goyal","doi":"10.1109/IC3.2015.7346687","DOIUrl":null,"url":null,"abstract":"This research presents a fully automatic sub-second fast method for left ventricle (LV) segmentation from clinical cardiac MRI images based on fast continuous max flow graph cuts and connected component labeling. The motivation for LV segmentation is to measure cardiac disease in a patient based on left ventricular function. This novel classification scheme of graph cuts labeling removes the need for manual segmentation and initialization with a seed point, since it automatically accurately extracts the LV in all slices of the full cardiac cycle in multi-frame MRI. This LV segmentation method achieves a sub-second fast computational time of 0.67 seconds on average per frame. The validity of the graph cuts labeling based automatic segmentation technique was verified by comparison with manual segmentation. Medical parameters like End Systolic Volume (ESV), End Diastolic Volume (EDV) and Ejection Fraction (EF) were calculated both automatically and manually and compared for accuracy.","PeriodicalId":217950,"journal":{"name":"2015 Eighth International Conference on Contemporary Computing (IC3)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Image based sub-second fast fully automatic complete cardiac cycle left ventricle segmentation in multi frame cardiac MRI images using pixel clustering and labelling\",\"authors\":\"Vinayak Ray, Ayush Goyal\",\"doi\":\"10.1109/IC3.2015.7346687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research presents a fully automatic sub-second fast method for left ventricle (LV) segmentation from clinical cardiac MRI images based on fast continuous max flow graph cuts and connected component labeling. The motivation for LV segmentation is to measure cardiac disease in a patient based on left ventricular function. This novel classification scheme of graph cuts labeling removes the need for manual segmentation and initialization with a seed point, since it automatically accurately extracts the LV in all slices of the full cardiac cycle in multi-frame MRI. This LV segmentation method achieves a sub-second fast computational time of 0.67 seconds on average per frame. The validity of the graph cuts labeling based automatic segmentation technique was verified by comparison with manual segmentation. Medical parameters like End Systolic Volume (ESV), End Diastolic Volume (EDV) and Ejection Fraction (EF) were calculated both automatically and manually and compared for accuracy.\",\"PeriodicalId\":217950,\"journal\":{\"name\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2015.7346687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2015.7346687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本研究提出了一种基于快速连续最大血流图切割和连通分量标记的全自动亚秒快速心脏MRI图像左心室分割方法。左室分割的动机是基于左心室功能来测量患者的心脏病。这种新的图切割标记分类方案消除了人工分割和种子点初始化的需要,因为它在多帧MRI中自动准确地提取了全心周期所有切片的LV。这种LV分割方法实现了亚秒级的快速计算时间,平均每帧0.67秒。通过与人工分割的比较,验证了基于图割标注的自动分割技术的有效性。自动和手动计算收缩期末容积(ESV)、舒张期末容积(EDV)和射血分数(EF)等医学参数,并比较其准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image based sub-second fast fully automatic complete cardiac cycle left ventricle segmentation in multi frame cardiac MRI images using pixel clustering and labelling
This research presents a fully automatic sub-second fast method for left ventricle (LV) segmentation from clinical cardiac MRI images based on fast continuous max flow graph cuts and connected component labeling. The motivation for LV segmentation is to measure cardiac disease in a patient based on left ventricular function. This novel classification scheme of graph cuts labeling removes the need for manual segmentation and initialization with a seed point, since it automatically accurately extracts the LV in all slices of the full cardiac cycle in multi-frame MRI. This LV segmentation method achieves a sub-second fast computational time of 0.67 seconds on average per frame. The validity of the graph cuts labeling based automatic segmentation technique was verified by comparison with manual segmentation. Medical parameters like End Systolic Volume (ESV), End Diastolic Volume (EDV) and Ejection Fraction (EF) were calculated both automatically and manually and compared for accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing security technique on generic database Pruned feature space for metamorphic malware detection using Markov Blanket Mitigation of desynchronization attack during inter-eNodeB handover key management in LTE Task behaviour inputs to a heterogeneous multiprocessor scheduler Hand written digit recognition system for South Indian languages using artificial neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1