Hyeongyeop Kang, Geonsun Lee, D. Kang, O. Kwon, Jun Yeup Cho, Ho-Jung Choi, JunaHvun Han
{"title":"跳得更远:在失重的沉浸式虚拟环境中向前跳跃","authors":"Hyeongyeop Kang, Geonsun Lee, D. Kang, O. Kwon, Jun Yeup Cho, Ho-Jung Choi, JunaHvun Han","doi":"10.1109/VR.2019.8798251","DOIUrl":null,"url":null,"abstract":"In a cable-driven suspension system developed to simulate the reduced gravity of lunar or Martian surfaces, we propose to manipu-late/reduce the physical cues of forward jumps so as to overcome the limited workspace problem. The physical cues should be manipulated in a way that the discrepancy from the visual cues provided through the HMD is not noticeable by users. We identified the extent to which forward jumps can be manipulated naturally. We combined it with visual gains, which can scale visual cues without being noticed by users. The test results obtained in a prototype application show that we can use both trajectory manipulation and visual gains to overcome the spatial limit. We also investigated the user experiences when making significantly high and far jumps. The results will be helpful in designing astronaut-training systems and various VR entertainment content.","PeriodicalId":315935,"journal":{"name":"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Jumping Further: Forward Jumps in a Gravity-reduced Immersive Virtual Environment\",\"authors\":\"Hyeongyeop Kang, Geonsun Lee, D. Kang, O. Kwon, Jun Yeup Cho, Ho-Jung Choi, JunaHvun Han\",\"doi\":\"10.1109/VR.2019.8798251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a cable-driven suspension system developed to simulate the reduced gravity of lunar or Martian surfaces, we propose to manipu-late/reduce the physical cues of forward jumps so as to overcome the limited workspace problem. The physical cues should be manipulated in a way that the discrepancy from the visual cues provided through the HMD is not noticeable by users. We identified the extent to which forward jumps can be manipulated naturally. We combined it with visual gains, which can scale visual cues without being noticed by users. The test results obtained in a prototype application show that we can use both trajectory manipulation and visual gains to overcome the spatial limit. We also investigated the user experiences when making significantly high and far jumps. The results will be helpful in designing astronaut-training systems and various VR entertainment content.\",\"PeriodicalId\":315935,\"journal\":{\"name\":\"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VR.2019.8798251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2019.8798251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Jumping Further: Forward Jumps in a Gravity-reduced Immersive Virtual Environment
In a cable-driven suspension system developed to simulate the reduced gravity of lunar or Martian surfaces, we propose to manipu-late/reduce the physical cues of forward jumps so as to overcome the limited workspace problem. The physical cues should be manipulated in a way that the discrepancy from the visual cues provided through the HMD is not noticeable by users. We identified the extent to which forward jumps can be manipulated naturally. We combined it with visual gains, which can scale visual cues without being noticed by users. The test results obtained in a prototype application show that we can use both trajectory manipulation and visual gains to overcome the spatial limit. We also investigated the user experiences when making significantly high and far jumps. The results will be helpful in designing astronaut-training systems and various VR entertainment content.