一种用于植入电子设备的紧凑型基于共振的无线能量传输系统

S. Bhuyan, S. K. Panda, K. Sivanand, R. Kumar
{"title":"一种用于植入电子设备的紧凑型基于共振的无线能量传输系统","authors":"S. Bhuyan, S. K. Panda, K. Sivanand, R. Kumar","doi":"10.1109/ICEAS.2011.6147134","DOIUrl":null,"url":null,"abstract":"A compact wireless energy transfer scheme for delivering power to the implantable electronic devices has been presented here. The wireless energy transfer system is built by using a printed spiral receiving resonator with a cylindrical source resonator to transfer energy wirelessly through strongly coupled magnetic resonance. Experimentally, it is found that the wireless power transfer efficiency reaches the maximum at the resonant frequency, and the efficiency decreases with the increase of the distance between the source and receiver coils. The proposed design has the significant advantage of being easier to implement for biomedical applications due to sizeable reduction in volume required on the implantable devices.","PeriodicalId":273164,"journal":{"name":"2011 International Conference on Energy, Automation and Signal","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A compact resonace-based wireless energy transfer system for implanted electronic devices\",\"authors\":\"S. Bhuyan, S. K. Panda, K. Sivanand, R. Kumar\",\"doi\":\"10.1109/ICEAS.2011.6147134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A compact wireless energy transfer scheme for delivering power to the implantable electronic devices has been presented here. The wireless energy transfer system is built by using a printed spiral receiving resonator with a cylindrical source resonator to transfer energy wirelessly through strongly coupled magnetic resonance. Experimentally, it is found that the wireless power transfer efficiency reaches the maximum at the resonant frequency, and the efficiency decreases with the increase of the distance between the source and receiver coils. The proposed design has the significant advantage of being easier to implement for biomedical applications due to sizeable reduction in volume required on the implantable devices.\",\"PeriodicalId\":273164,\"journal\":{\"name\":\"2011 International Conference on Energy, Automation and Signal\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Energy, Automation and Signal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAS.2011.6147134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Energy, Automation and Signal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAS.2011.6147134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种用于向可植入电子设备供电的紧凑型无线能量传输方案。该无线能量传输系统采用印刷螺旋接收谐振器和圆柱形源谐振器,通过强耦合磁共振实现能量无线传输。实验发现,无线能量传输效率在谐振频率处达到最大值,并且随着源线圈与接收线圈之间距离的增加而降低。由于植入式装置所需的体积大幅减少,所提出的设计具有易于实现生物医学应用的显着优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A compact resonace-based wireless energy transfer system for implanted electronic devices
A compact wireless energy transfer scheme for delivering power to the implantable electronic devices has been presented here. The wireless energy transfer system is built by using a printed spiral receiving resonator with a cylindrical source resonator to transfer energy wirelessly through strongly coupled magnetic resonance. Experimentally, it is found that the wireless power transfer efficiency reaches the maximum at the resonant frequency, and the efficiency decreases with the increase of the distance between the source and receiver coils. The proposed design has the significant advantage of being easier to implement for biomedical applications due to sizeable reduction in volume required on the implantable devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EQU-IITG: A multi-format formal equivalence checker Low power, dynamically reconfigurable, memoryless systolic array based architecture for Viterbi decoder Model reduction of linear interval systems using Kharitonov's polynomials An MIWO based approach of power system transient stability enhancement with STATCOM Energy efficiency invariance laws acting in the field of multiphase AC inverter drives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1