Chen-Ying Hsieh, Jurn-Gyu Park, N. Dutt, Sung-Soo Lim
{"title":"面向手机游戏的内存感知协同CPU-GPU DVFS调控器","authors":"Chen-Ying Hsieh, Jurn-Gyu Park, N. Dutt, Sung-Soo Lim","doi":"10.1109/ESTIMedia.2015.7351775","DOIUrl":null,"url":null,"abstract":"Modern mobile heterogeneous platforms have GPUs integrated with multicore processors to enable execution of highend graphics-intensive games. However, these gaming applications consume significant power due to heavy utilization of CPU-GPU resources, which drains battery resources that are critical for mobile devices. While Dynamic Voltage and Frequency Scaling (DVFS) techniques have been exploited previously for dynamic power management, contemporary techniques do not fully exploit the memory access footprint for graphics-intensive gaming applications, missing opportunities for energy efficiency. In this paper, we for the first time propose a memory-aware cooperative CPU-GPU DVFS governor that considers both the memory access footprint as well as the CPU/GPU frequency to improve energy efficiency of high-end mobile game workloads. Our experimental results show that our proposed game governor achieves on average 13% and 5% improvement of energy efficiency with minor degradation of performance compared to default governors and state-of-the-art game governors.","PeriodicalId":350361,"journal":{"name":"2015 13th IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Memory-aware cooperative CPU-GPU DVFS governor for mobile games\",\"authors\":\"Chen-Ying Hsieh, Jurn-Gyu Park, N. Dutt, Sung-Soo Lim\",\"doi\":\"10.1109/ESTIMedia.2015.7351775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern mobile heterogeneous platforms have GPUs integrated with multicore processors to enable execution of highend graphics-intensive games. However, these gaming applications consume significant power due to heavy utilization of CPU-GPU resources, which drains battery resources that are critical for mobile devices. While Dynamic Voltage and Frequency Scaling (DVFS) techniques have been exploited previously for dynamic power management, contemporary techniques do not fully exploit the memory access footprint for graphics-intensive gaming applications, missing opportunities for energy efficiency. In this paper, we for the first time propose a memory-aware cooperative CPU-GPU DVFS governor that considers both the memory access footprint as well as the CPU/GPU frequency to improve energy efficiency of high-end mobile game workloads. Our experimental results show that our proposed game governor achieves on average 13% and 5% improvement of energy efficiency with minor degradation of performance compared to default governors and state-of-the-art game governors.\",\"PeriodicalId\":350361,\"journal\":{\"name\":\"2015 13th IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 13th IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTIMedia.2015.7351775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th IEEE Symposium on Embedded Systems For Real-time Multimedia (ESTIMedia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTIMedia.2015.7351775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Memory-aware cooperative CPU-GPU DVFS governor for mobile games
Modern mobile heterogeneous platforms have GPUs integrated with multicore processors to enable execution of highend graphics-intensive games. However, these gaming applications consume significant power due to heavy utilization of CPU-GPU resources, which drains battery resources that are critical for mobile devices. While Dynamic Voltage and Frequency Scaling (DVFS) techniques have been exploited previously for dynamic power management, contemporary techniques do not fully exploit the memory access footprint for graphics-intensive gaming applications, missing opportunities for energy efficiency. In this paper, we for the first time propose a memory-aware cooperative CPU-GPU DVFS governor that considers both the memory access footprint as well as the CPU/GPU frequency to improve energy efficiency of high-end mobile game workloads. Our experimental results show that our proposed game governor achieves on average 13% and 5% improvement of energy efficiency with minor degradation of performance compared to default governors and state-of-the-art game governors.