噪声不平衡数据下重采样技术的比较分析

Arjun Puri, M. Gupta
{"title":"噪声不平衡数据下重采样技术的比较分析","authors":"Arjun Puri, M. Gupta","doi":"10.1109/ICICT46931.2019.8977650","DOIUrl":null,"url":null,"abstract":"Classification is mainly challenged by the problems in the dataset. When dataset have uneven distribution of data among classes, then class imbalance problem arise. Class imbalance with noise creates immense effect on classification of instances of classes. The main focus of this article is to provide the detail comparative analysis of seven Resampling techniques under 16 noisy imbalanced datasets using C4.5 classifier. The performance evaluation is done by using AUC, F1 score, G-mean. Based on the evaluation, article inferred that SMOTE-ENN perform better than rest of resampling techniques.","PeriodicalId":412668,"journal":{"name":"2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Comparative Analysis of Resampling Techniques under Noisy Imbalanced Datasets\",\"authors\":\"Arjun Puri, M. Gupta\",\"doi\":\"10.1109/ICICT46931.2019.8977650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification is mainly challenged by the problems in the dataset. When dataset have uneven distribution of data among classes, then class imbalance problem arise. Class imbalance with noise creates immense effect on classification of instances of classes. The main focus of this article is to provide the detail comparative analysis of seven Resampling techniques under 16 noisy imbalanced datasets using C4.5 classifier. The performance evaluation is done by using AUC, F1 score, G-mean. Based on the evaluation, article inferred that SMOTE-ENN perform better than rest of resampling techniques.\",\"PeriodicalId\":412668,\"journal\":{\"name\":\"2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICT46931.2019.8977650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT46931.2019.8977650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

分类主要受到数据集中问题的挑战。当数据集的数据在类之间分布不均匀时,就会出现类不平衡问题。类与噪声的不平衡对类实例的分类产生了巨大的影响。本文的主要重点是使用C4.5分类器对16个噪声不平衡数据集下的7种重采样技术进行详细的比较分析。性能评价采用AUC、F1评分、G-mean进行。基于评价,本文推断SMOTE-ENN的重采样性能优于其他重采样技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Analysis of Resampling Techniques under Noisy Imbalanced Datasets
Classification is mainly challenged by the problems in the dataset. When dataset have uneven distribution of data among classes, then class imbalance problem arise. Class imbalance with noise creates immense effect on classification of instances of classes. The main focus of this article is to provide the detail comparative analysis of seven Resampling techniques under 16 noisy imbalanced datasets using C4.5 classifier. The performance evaluation is done by using AUC, F1 score, G-mean. Based on the evaluation, article inferred that SMOTE-ENN perform better than rest of resampling techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fraud Detection During Money Transaction and Prevention Stockwell Transform Based Algorithm for Processing of Digital Communication Signals to Detect Superimposed Noise Disturbances Exploration of Deep Learning Techniques in Big Data Analytics Acquiring and Analyzing Movement Detection through Image Granulation Handling Structured Data Using Data Mining Clustering Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1