{"title":"信用评分模型的比较研究","authors":"Defu Zhang, Hongyi Huang, Qingshan Chen, Yi Jiang","doi":"10.1109/ICNC.2007.15","DOIUrl":null,"url":null,"abstract":"In this paper we consider a credit scoring problem. We compare three powerful credit scoring models: genetic programming (GP), backpropagation neural networks (BP) and support vector machines (SVM) when applied to this problem, then we give a combined model. The results show that the combined model produces good classification results.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A Comparison Study of Credit Scoring Models\",\"authors\":\"Defu Zhang, Hongyi Huang, Qingshan Chen, Yi Jiang\",\"doi\":\"10.1109/ICNC.2007.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider a credit scoring problem. We compare three powerful credit scoring models: genetic programming (GP), backpropagation neural networks (BP) and support vector machines (SVM) when applied to this problem, then we give a combined model. The results show that the combined model produces good classification results.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we consider a credit scoring problem. We compare three powerful credit scoring models: genetic programming (GP), backpropagation neural networks (BP) and support vector machines (SVM) when applied to this problem, then we give a combined model. The results show that the combined model produces good classification results.