线性驱动系统时间最优MPC的实验验证

L. V. D. Broeck, M. Diehl, J. Swevers
{"title":"线性驱动系统时间最优MPC的实验验证","authors":"L. V. D. Broeck, M. Diehl, J. Swevers","doi":"10.1109/AMC.2010.5464106","DOIUrl":null,"url":null,"abstract":"Model Predictive Control (MPC) is a control technique capable of accounting for constraints on inputs, outputs and states, and traditionally makes a trade-off between output error and input cost. Originally developed for slow processes, MPC is nowadays also applied to faster systems such as mechatronic systems, thanks to increased computer power and more advanced algorithms. For these systems however, time optimality is often of the utmost importance, a feature that is not present in traditional MPC. This paper therefore presents and validates a new type of MPC, time optimal MPC (TOMPC), which minimizes the settling time. An experimental validation of TOMPC on a linear drive system with a sampling time of 5ms is performed and comparison with traditional MPC and linear feedback systems is given.","PeriodicalId":406900,"journal":{"name":"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Experimental validation of time optimal MPC on a linear drive system\",\"authors\":\"L. V. D. Broeck, M. Diehl, J. Swevers\",\"doi\":\"10.1109/AMC.2010.5464106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model Predictive Control (MPC) is a control technique capable of accounting for constraints on inputs, outputs and states, and traditionally makes a trade-off between output error and input cost. Originally developed for slow processes, MPC is nowadays also applied to faster systems such as mechatronic systems, thanks to increased computer power and more advanced algorithms. For these systems however, time optimality is often of the utmost importance, a feature that is not present in traditional MPC. This paper therefore presents and validates a new type of MPC, time optimal MPC (TOMPC), which minimizes the settling time. An experimental validation of TOMPC on a linear drive system with a sampling time of 5ms is performed and comparison with traditional MPC and linear feedback systems is given.\",\"PeriodicalId\":406900,\"journal\":{\"name\":\"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2010.5464106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2010.5464106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

模型预测控制(MPC)是一种能够考虑输入、输出和状态约束的控制技术,传统上在输出误差和输入成本之间进行权衡。最初是为缓慢的过程开发的,由于计算机能力的提高和更先进的算法,MPC现在也应用于更快的系统,如机电系统。然而,对于这些系统来说,时间最优性通常是最重要的,这是传统MPC所不具备的特性。因此,本文提出并验证了一种新的MPC,即时间最优MPC (TOMPC),它使沉降时间最小化。在一个采样时间为5ms的线性驱动系统上进行了实验验证,并与传统的MPC和线性反馈系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental validation of time optimal MPC on a linear drive system
Model Predictive Control (MPC) is a control technique capable of accounting for constraints on inputs, outputs and states, and traditionally makes a trade-off between output error and input cost. Originally developed for slow processes, MPC is nowadays also applied to faster systems such as mechatronic systems, thanks to increased computer power and more advanced algorithms. For these systems however, time optimality is often of the utmost importance, a feature that is not present in traditional MPC. This paper therefore presents and validates a new type of MPC, time optimal MPC (TOMPC), which minimizes the settling time. An experimental validation of TOMPC on a linear drive system with a sampling time of 5ms is performed and comparison with traditional MPC and linear feedback systems is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental closed-form solution to globally consistent 2D range scan mapping with two-step pose estimation A proposal of feature extraction for impression analysis Advanced contouring error compensation in high performance motion control systems Smooth touch and force control to unknown environment without force sensor for industrial robot A simplified structure for robustness enhancement of time-delay systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1