加权SMOTE算法:一种改善不平衡数据疾病预测的工具

Rakesh Kumar Patnaik, Ming-Chih Ho, J. A. Yeh
{"title":"加权SMOTE算法:一种改善不平衡数据疾病预测的工具","authors":"Rakesh Kumar Patnaik, Ming-Chih Ho, J. A. Yeh","doi":"10.1109/ICCE-Taiwan58799.2023.10226703","DOIUrl":null,"url":null,"abstract":"In the medical field, acquiring a sufficient number of medical samples can be challenging, and the collected datasets may be imbalanced and small. To address these issues, we propose a weighted SMOTE algorithm that targets imbalanced datasets. This technique has been applied to a dataset of breath biomarkers of liver disease as a feature set and a supervised learning model. Our results show that the proposed method significantly improves the prediction probability and classification performance of the chosen model in both the original imbalanced dataset and the balanced dataset. This study demonstrates the potential of the proposed approach to enhance machine learning performance while dealing with small and imbalanced datasets in medical applications.","PeriodicalId":112903,"journal":{"name":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted SMOTE Algorithm: A Tool To Improve Disease Prediction With Imbalanced Data\",\"authors\":\"Rakesh Kumar Patnaik, Ming-Chih Ho, J. A. Yeh\",\"doi\":\"10.1109/ICCE-Taiwan58799.2023.10226703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the medical field, acquiring a sufficient number of medical samples can be challenging, and the collected datasets may be imbalanced and small. To address these issues, we propose a weighted SMOTE algorithm that targets imbalanced datasets. This technique has been applied to a dataset of breath biomarkers of liver disease as a feature set and a supervised learning model. Our results show that the proposed method significantly improves the prediction probability and classification performance of the chosen model in both the original imbalanced dataset and the balanced dataset. This study demonstrates the potential of the proposed approach to enhance machine learning performance while dealing with small and imbalanced datasets in medical applications.\",\"PeriodicalId\":112903,\"journal\":{\"name\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在医学领域,获取足够数量的医学样本可能具有挑战性,并且收集的数据集可能不平衡且很小。为了解决这些问题,我们提出了一种针对不平衡数据集的加权SMOTE算法。该技术已应用于肝病呼吸生物标志物数据集,作为特征集和监督学习模型。结果表明,所提出的方法在原始不平衡数据集和平衡数据集上都显著提高了所选模型的预测概率和分类性能。这项研究证明了所提出的方法在处理医疗应用中的小型和不平衡数据集时提高机器学习性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weighted SMOTE Algorithm: A Tool To Improve Disease Prediction With Imbalanced Data
In the medical field, acquiring a sufficient number of medical samples can be challenging, and the collected datasets may be imbalanced and small. To address these issues, we propose a weighted SMOTE algorithm that targets imbalanced datasets. This technique has been applied to a dataset of breath biomarkers of liver disease as a feature set and a supervised learning model. Our results show that the proposed method significantly improves the prediction probability and classification performance of the chosen model in both the original imbalanced dataset and the balanced dataset. This study demonstrates the potential of the proposed approach to enhance machine learning performance while dealing with small and imbalanced datasets in medical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a visual IoT environment analysis system to support self-directed learning of students Smallest Botnet Firewall Building Problem and a Girvan-Newman Algorithm-Based Heuristic Solution Parametric Optimization of WEDM Process for Machining ANSI Steel Using Soft-Computing Methods Development of a Transmissive LED Touch Display for Engineered Marble Sewage Treatment Interactive Learning Game Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1