计算深度

L. Antunes, L. Fortnow, D. Melkebeek
{"title":"计算深度","authors":"L. Antunes, L. Fortnow, D. Melkebeek","doi":"10.1109/CCC.2001.933893","DOIUrl":null,"url":null,"abstract":"Introduces computational depth, a measure for the amount of \"non-random\" or \"useful\" information in a string, by considering the difference of various Kolmogorov complexity measures. We investigate three instantiations of computational depth: (1) basic computational depth, a clean notion capturing the spirit of C.H. Bennett's (1988) logical depth; (2) time-t computational depth and the resulting concept of shallow sets, a generalization of sparse and random sets based on low depth properties of their characteristic sequences (we show that every computable set that is reducible to a shallow set has polynomial-size circuits); and (3) distinguishing computational depth, measuring when strings are easier to recognize than to produce (we show that if a Boolean formula has a non-negligible fraction of its satisfying assignments with low depth, then we can find a satisfying assignment efficiently).","PeriodicalId":240268,"journal":{"name":"Proceedings 16th Annual IEEE Conference on Computational Complexity","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Computational depth\",\"authors\":\"L. Antunes, L. Fortnow, D. Melkebeek\",\"doi\":\"10.1109/CCC.2001.933893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduces computational depth, a measure for the amount of \\\"non-random\\\" or \\\"useful\\\" information in a string, by considering the difference of various Kolmogorov complexity measures. We investigate three instantiations of computational depth: (1) basic computational depth, a clean notion capturing the spirit of C.H. Bennett's (1988) logical depth; (2) time-t computational depth and the resulting concept of shallow sets, a generalization of sparse and random sets based on low depth properties of their characteristic sequences (we show that every computable set that is reducible to a shallow set has polynomial-size circuits); and (3) distinguishing computational depth, measuring when strings are easier to recognize than to produce (we show that if a Boolean formula has a non-negligible fraction of its satisfying assignments with low depth, then we can find a satisfying assignment efficiently).\",\"PeriodicalId\":240268,\"journal\":{\"name\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 16th Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2001.933893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2001.933893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

通过考虑各种Kolmogorov复杂性度量的差异,引入计算深度,即字符串中“非随机”或“有用”信息的量的度量。我们研究了计算深度的三个实例:(1)基本计算深度,这是一个清晰的概念,抓住了C.H. Bennett(1988)逻辑深度的精神;(2) time-t计算深度和由此产生的浅集概念,基于稀疏集和随机集特征序列的低深度特性的推广(我们表明,每个可简化为浅集的可计算集都具有多项式大小的电路);(3)区分计算深度,衡量什么时候字符串更容易识别而不是产生(我们表明,如果布尔公式在低深度下具有不可忽略的部分令人满意的赋值,那么我们可以有效地找到令人满意的赋值)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational depth
Introduces computational depth, a measure for the amount of "non-random" or "useful" information in a string, by considering the difference of various Kolmogorov complexity measures. We investigate three instantiations of computational depth: (1) basic computational depth, a clean notion capturing the spirit of C.H. Bennett's (1988) logical depth; (2) time-t computational depth and the resulting concept of shallow sets, a generalization of sparse and random sets based on low depth properties of their characteristic sequences (we show that every computable set that is reducible to a shallow set has polynomial-size circuits); and (3) distinguishing computational depth, measuring when strings are easier to recognize than to produce (we show that if a Boolean formula has a non-negligible fraction of its satisfying assignments with low depth, then we can find a satisfying assignment efficiently).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Logical operations and Kolmogorov complexity. II Hausdorff dimension in exponential time Time-space tradeoffs in the counting hierarchy Simple analysis of graph tests for linearity and PCP Computational depth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1