{"title":"振动触觉显示器的连续触觉感知","authors":"L. Rahal, Jongeun Cha, Abdulmotaleb El Saddik","doi":"10.1109/ROSE.2009.5355986","DOIUrl":null,"url":null,"abstract":"Today, the digital community has strongly allied with rich sensory human computer interfaces (HCIs) to better understand how people interact via their sense of touch. In this research, we leverage knowledge of the perception and psychophysics of haptics to better understand the human tactile sensory system and develop perceptual tactile displays. We utilize a human sensory illusion called the “funneling illusion” to display a dynamic tactile sensation, such as a slow and smooth, continuous sensation on the human skin, with discrete actuators. After obtaining the illusion of a continuous movement of one tactile stimulus, we examine the quality of the continuous movement according to the effects of temporal intensity changes of vibrotactile actuators in a linear and logarithmic pattern; location of the continuous movement on the dorsal of the human forearm and upper arm; orientation of the continuous movement with respect to the axis of the limb; duration of sensory excitation; and gender. Psychophysical experiments have revealed correlations between the orientation, duration of the vibrotactile actuators and gender with the preferred intensity variation, substantiating our research direction.","PeriodicalId":107220,"journal":{"name":"2009 IEEE International Workshop on Robotic and Sensors Environments","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Continuous tactile perception for vibrotactile displays\",\"authors\":\"L. Rahal, Jongeun Cha, Abdulmotaleb El Saddik\",\"doi\":\"10.1109/ROSE.2009.5355986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, the digital community has strongly allied with rich sensory human computer interfaces (HCIs) to better understand how people interact via their sense of touch. In this research, we leverage knowledge of the perception and psychophysics of haptics to better understand the human tactile sensory system and develop perceptual tactile displays. We utilize a human sensory illusion called the “funneling illusion” to display a dynamic tactile sensation, such as a slow and smooth, continuous sensation on the human skin, with discrete actuators. After obtaining the illusion of a continuous movement of one tactile stimulus, we examine the quality of the continuous movement according to the effects of temporal intensity changes of vibrotactile actuators in a linear and logarithmic pattern; location of the continuous movement on the dorsal of the human forearm and upper arm; orientation of the continuous movement with respect to the axis of the limb; duration of sensory excitation; and gender. Psychophysical experiments have revealed correlations between the orientation, duration of the vibrotactile actuators and gender with the preferred intensity variation, substantiating our research direction.\",\"PeriodicalId\":107220,\"journal\":{\"name\":\"2009 IEEE International Workshop on Robotic and Sensors Environments\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Workshop on Robotic and Sensors Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROSE.2009.5355986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Workshop on Robotic and Sensors Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2009.5355986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuous tactile perception for vibrotactile displays
Today, the digital community has strongly allied with rich sensory human computer interfaces (HCIs) to better understand how people interact via their sense of touch. In this research, we leverage knowledge of the perception and psychophysics of haptics to better understand the human tactile sensory system and develop perceptual tactile displays. We utilize a human sensory illusion called the “funneling illusion” to display a dynamic tactile sensation, such as a slow and smooth, continuous sensation on the human skin, with discrete actuators. After obtaining the illusion of a continuous movement of one tactile stimulus, we examine the quality of the continuous movement according to the effects of temporal intensity changes of vibrotactile actuators in a linear and logarithmic pattern; location of the continuous movement on the dorsal of the human forearm and upper arm; orientation of the continuous movement with respect to the axis of the limb; duration of sensory excitation; and gender. Psychophysical experiments have revealed correlations between the orientation, duration of the vibrotactile actuators and gender with the preferred intensity variation, substantiating our research direction.