塔根黎明的光(宁)在哪里?推出比特币闪电(IP)网络

P. Casas, Matteo Romiti, Peter Holzer, Sami Ben Mariem, B. Donnet, Bernhard Haslhofer
{"title":"塔根黎明的光(宁)在哪里?推出比特币闪电(IP)网络","authors":"P. Casas, Matteo Romiti, Peter Holzer, Sami Ben Mariem, B. Donnet, Bernhard Haslhofer","doi":"10.1109/CloudNet53349.2021.9657121","DOIUrl":null,"url":null,"abstract":"Proposed in 2016 and launched in 2018, the Bitcoin (BTC) Lightning Network (LN) can scale-up the capacity of the BTC blockchain network to process a significantly higher amount of transactions, in a faster, cheaper, and more privacy preserving manner. The number of LN nodes has been significantly increasing since 2018, and today there are more than twelve thousand nodes actively participating of so-called LN payment channels. The upcoming Taproot upgrade to the Bitcoin protocol would further boost the development and adoption of the LN. Taproot is the most significant upgrade to the Bitcoin network since the block size increase of 2017, and it will make LN transactions cheaper, more flexible, and more private. We focus on the characterization of the LN network topology, using network active measurements. By crawling the underlying P2P network supporting the Bitcoin LN over a span of 10-months, we unveil the LN in terms of size and location of its nodes as well as connectivity protocols, comparing it to the P2P IP network supporting the BTC blockchain. Among our findings, we show that IP addresses exposed by LN nodes correspond mainly to customer networks, even if most BTC nodes are actually deployed at major cloud providers, and that LN nodes significantly rely on anonymized networks and protocols such as Onion, with more than 40% of LN nodes connect through Tor.","PeriodicalId":369247,"journal":{"name":"2021 IEEE 10th International Conference on Cloud Networking (CloudNet)","volume":"229 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Where is the Light(ning) in the Taproot Dawn? Unveiling the Bitcoin Lightning (IP) Network\",\"authors\":\"P. Casas, Matteo Romiti, Peter Holzer, Sami Ben Mariem, B. Donnet, Bernhard Haslhofer\",\"doi\":\"10.1109/CloudNet53349.2021.9657121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposed in 2016 and launched in 2018, the Bitcoin (BTC) Lightning Network (LN) can scale-up the capacity of the BTC blockchain network to process a significantly higher amount of transactions, in a faster, cheaper, and more privacy preserving manner. The number of LN nodes has been significantly increasing since 2018, and today there are more than twelve thousand nodes actively participating of so-called LN payment channels. The upcoming Taproot upgrade to the Bitcoin protocol would further boost the development and adoption of the LN. Taproot is the most significant upgrade to the Bitcoin network since the block size increase of 2017, and it will make LN transactions cheaper, more flexible, and more private. We focus on the characterization of the LN network topology, using network active measurements. By crawling the underlying P2P network supporting the Bitcoin LN over a span of 10-months, we unveil the LN in terms of size and location of its nodes as well as connectivity protocols, comparing it to the P2P IP network supporting the BTC blockchain. Among our findings, we show that IP addresses exposed by LN nodes correspond mainly to customer networks, even if most BTC nodes are actually deployed at major cloud providers, and that LN nodes significantly rely on anonymized networks and protocols such as Onion, with more than 40% of LN nodes connect through Tor.\",\"PeriodicalId\":369247,\"journal\":{\"name\":\"2021 IEEE 10th International Conference on Cloud Networking (CloudNet)\",\"volume\":\"229 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 10th International Conference on Cloud Networking (CloudNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudNet53349.2021.9657121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 10th International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet53349.2021.9657121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

比特币(BTC)闪电网络(LN)于2016年提出并于2018年推出,可以扩大BTC区块链网络的容量,以更快、更便宜和更保护隐私的方式处理更多的交易。自2018年以来,LN节点的数量显著增加,今天有超过12000个节点积极参与所谓的LN支付渠道。即将到来的Taproot升级到比特币协议将进一步推动闪电网络的发展和采用。Taproot是自2017年区块大小增加以来对比特币网络最重要的升级,它将使LN交易更便宜,更灵活,更私密。我们主要关注LN网络拓扑的特征,使用网络主动测量。通过在10个月的时间里爬行支持比特币网络的底层P2P网络,我们在节点的大小和位置以及连接协议方面揭示了网络,并将其与支持比特币区块链的P2P IP网络进行了比较。在我们的研究结果中,我们表明,即使大多数BTC节点实际上部署在主要的云提供商处,LN节点暴露的IP地址也主要与客户网络相对应,并且LN节点严重依赖匿名网络和洋葱等协议,超过40%的LN节点通过Tor连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Where is the Light(ning) in the Taproot Dawn? Unveiling the Bitcoin Lightning (IP) Network
Proposed in 2016 and launched in 2018, the Bitcoin (BTC) Lightning Network (LN) can scale-up the capacity of the BTC blockchain network to process a significantly higher amount of transactions, in a faster, cheaper, and more privacy preserving manner. The number of LN nodes has been significantly increasing since 2018, and today there are more than twelve thousand nodes actively participating of so-called LN payment channels. The upcoming Taproot upgrade to the Bitcoin protocol would further boost the development and adoption of the LN. Taproot is the most significant upgrade to the Bitcoin network since the block size increase of 2017, and it will make LN transactions cheaper, more flexible, and more private. We focus on the characterization of the LN network topology, using network active measurements. By crawling the underlying P2P network supporting the Bitcoin LN over a span of 10-months, we unveil the LN in terms of size and location of its nodes as well as connectivity protocols, comparing it to the P2P IP network supporting the BTC blockchain. Among our findings, we show that IP addresses exposed by LN nodes correspond mainly to customer networks, even if most BTC nodes are actually deployed at major cloud providers, and that LN nodes significantly rely on anonymized networks and protocols such as Onion, with more than 40% of LN nodes connect through Tor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating Function Completion Time Distribution in Open Source FaaS Using Machine Learning and In-band Network Telemetry for Service Metrics Estimation A Machine Learning Approach for Service Function Chain Embedding in Cloud Datacenter Networks Where is the Light(ning) in the Taproot Dawn? Unveiling the Bitcoin Lightning (IP) Network An Edge Video Analysis Solution For Intelligent Real-Time Video Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1