两个二阶线性微分方程解的乘积方程

S. Slavyanov
{"title":"两个二阶线性微分方程解的乘积方程","authors":"S. Slavyanov","doi":"10.1109/DD.2000.902370","DOIUrl":null,"url":null,"abstract":"The following problem is studied. Consider two linear homogeneous second-order ordinary differential equations of the form ry''+r'y'=fy (eqn.1) and ru''+r'u'=gu (eqn.2). These equations are chosen to be formally self-adjoint. The function /spl upsi/(z) is defined as a product of the arbitrary solutions y(z) and g(z) of these equations. /spl upsi/:=yu. It is assumed that the functions r(z), f(z), and g(z) are analytical functions. Moreover, if applications to special functions are studied then r(z) may be taken a polynomial, and f(z) g(z) are fractions of two polynomials. The question arises: what is the differential equation for which the function /spl upsi/(z) is a solution? A more sophisticated question is: is there a differential equation for which singularities are located only at the points where singularities of eqs. 1 and 2 are? These are discussed.","PeriodicalId":184684,"journal":{"name":"International Seminar Day on Diffraction Millennium Workshop (IEEE Cat. No.00EX450)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The equation for a product of solutions of two second-order linear ODEs\",\"authors\":\"S. Slavyanov\",\"doi\":\"10.1109/DD.2000.902370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The following problem is studied. Consider two linear homogeneous second-order ordinary differential equations of the form ry''+r'y'=fy (eqn.1) and ru''+r'u'=gu (eqn.2). These equations are chosen to be formally self-adjoint. The function /spl upsi/(z) is defined as a product of the arbitrary solutions y(z) and g(z) of these equations. /spl upsi/:=yu. It is assumed that the functions r(z), f(z), and g(z) are analytical functions. Moreover, if applications to special functions are studied then r(z) may be taken a polynomial, and f(z) g(z) are fractions of two polynomials. The question arises: what is the differential equation for which the function /spl upsi/(z) is a solution? A more sophisticated question is: is there a differential equation for which singularities are located only at the points where singularities of eqs. 1 and 2 are? These are discussed.\",\"PeriodicalId\":184684,\"journal\":{\"name\":\"International Seminar Day on Diffraction Millennium Workshop (IEEE Cat. No.00EX450)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Seminar Day on Diffraction Millennium Workshop (IEEE Cat. No.00EX450)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD.2000.902370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Seminar Day on Diffraction Millennium Workshop (IEEE Cat. No.00EX450)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD.2000.902370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了以下问题。考虑两个线性齐次二阶常微分方程,其形式为ry' +r'y'=fy (eqn.1)和ru' +r'u'=gu (eqn.2)。这些方程被选择为形式自伴随的。函数/spl upsi/(z)被定义为这些方程的任意解y(z)和g(z)的乘积。spl upsi /: =。假设函数r(z)、f(z)和g(z)是解析函数。此外,如果研究特殊函数的应用,则r(z)可以取多项式,f(z) g(z)是两个多项式的分数。问题来了:函数/spl upsi/(z)作为解的微分方程是什么?一个更复杂的问题是:是否存在这样一个微分方程,它的奇点只位于方程的奇点处。1和2是?讨论了这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The equation for a product of solutions of two second-order linear ODEs
The following problem is studied. Consider two linear homogeneous second-order ordinary differential equations of the form ry''+r'y'=fy (eqn.1) and ru''+r'u'=gu (eqn.2). These equations are chosen to be formally self-adjoint. The function /spl upsi/(z) is defined as a product of the arbitrary solutions y(z) and g(z) of these equations. /spl upsi/:=yu. It is assumed that the functions r(z), f(z), and g(z) are analytical functions. Moreover, if applications to special functions are studied then r(z) may be taken a polynomial, and f(z) g(z) are fractions of two polynomials. The question arises: what is the differential equation for which the function /spl upsi/(z) is a solution? A more sophisticated question is: is there a differential equation for which singularities are located only at the points where singularities of eqs. 1 and 2 are? These are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
To the problem of diffraction on a slit: some properties of Schwarzschild's series Diffraction of electromagnetic waves from the impedance with different perturbations Direct and inverse problems of the ray tomography on the creeping waves Addition theorem for Gegenbauer functions Rigorous mathematical models for the reconstruction of thin films profiles from X-ray intensities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1