基于鲁棒降维的人体动作识别

Óscar Pérez, R. Xu, M. Piccardi
{"title":"基于鲁棒降维的人体动作识别","authors":"Óscar Pérez, R. Xu, M. Piccardi","doi":"10.1109/DICTA.2010.66","DOIUrl":null,"url":null,"abstract":"Human action recognition can be approached by combining an action-discriminative feature set with a classifier. However, the dimensionality of typical feature sets joint with that of the time dimension often leads to a curse-of-dimensionality situation. Moreover, the measurement of the feature set is subject to sometime severe errors. This paper presents an approach to human action recognition based on robust dimensionality reduction. The observation probabilities of hidden Markov models (HMM) are modelled by mixtures of probabilistic principal components analyzers and mixtures of $t$-distribution sub-spaces, and compared with conventional Gaussian mixture models. Experimental results on two datasets show that dimensionality reduction helps improve the classification accuracy and that the heavier-tailed $t$-distribution can help reduce the impact of outliers generated by segmentation errors.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Robust Dimensionality Reduction for Human Action Recognition\",\"authors\":\"Óscar Pérez, R. Xu, M. Piccardi\",\"doi\":\"10.1109/DICTA.2010.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human action recognition can be approached by combining an action-discriminative feature set with a classifier. However, the dimensionality of typical feature sets joint with that of the time dimension often leads to a curse-of-dimensionality situation. Moreover, the measurement of the feature set is subject to sometime severe errors. This paper presents an approach to human action recognition based on robust dimensionality reduction. The observation probabilities of hidden Markov models (HMM) are modelled by mixtures of probabilistic principal components analyzers and mixtures of $t$-distribution sub-spaces, and compared with conventional Gaussian mixture models. Experimental results on two datasets show that dimensionality reduction helps improve the classification accuracy and that the heavier-tailed $t$-distribution can help reduce the impact of outliers generated by segmentation errors.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

人类动作识别可以通过将动作判别特征集与分类器相结合来实现。然而,典型特征集的维数与时间维数相结合时,往往会出现维数不足的情况。此外,特征集的测量有时会出现严重的错误。提出了一种基于鲁棒降维的人体动作识别方法。将隐马尔可夫模型(HMM)的观测概率用概率主成分分析器和t -分布子空间的混合模型来建模,并与传统的高斯混合模型进行了比较。在两个数据集上的实验结果表明,降维有助于提高分类精度,重尾的$t$-分布有助于减少分割错误产生的离群值的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Dimensionality Reduction for Human Action Recognition
Human action recognition can be approached by combining an action-discriminative feature set with a classifier. However, the dimensionality of typical feature sets joint with that of the time dimension often leads to a curse-of-dimensionality situation. Moreover, the measurement of the feature set is subject to sometime severe errors. This paper presents an approach to human action recognition based on robust dimensionality reduction. The observation probabilities of hidden Markov models (HMM) are modelled by mixtures of probabilistic principal components analyzers and mixtures of $t$-distribution sub-spaces, and compared with conventional Gaussian mixture models. Experimental results on two datasets show that dimensionality reduction helps improve the classification accuracy and that the heavier-tailed $t$-distribution can help reduce the impact of outliers generated by segmentation errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1