{"title":"用SI流行模型分析配电网电压跌落传播","authors":"Miguel Romero-L, L. Gallego","doi":"10.1109/PEPQA.2017.7981685","DOIUrl":null,"url":null,"abstract":"The occurrence of different types of faults and connection of heavy loads could cause voltage sags in several busbars in distribution grids. In this paper a Susceptible-Infected (SI) epidemic model is proposed to assess the propagation of voltage sags in distribution systems. In the SI model, the infectious nodes are the bus-bars where faults or connection of big loads could occur. On the other hand, susceptible nodes are the bus-bars in which voltage sags could occur. Parameters that affect the voltage sags propagation as system topology and detection threshold are modeled using the concept of infection rate (β). + A directed graph representing the voltage sags propagation is calculated based on the values of β between every pair of nodes. Finally, the propagation is characterized in terms of fault impedance and nodes are classified using graph theory indexes.","PeriodicalId":256426,"journal":{"name":"2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analysis of voltage sags propagation in distribution grids using a SI epidemic model\",\"authors\":\"Miguel Romero-L, L. Gallego\",\"doi\":\"10.1109/PEPQA.2017.7981685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The occurrence of different types of faults and connection of heavy loads could cause voltage sags in several busbars in distribution grids. In this paper a Susceptible-Infected (SI) epidemic model is proposed to assess the propagation of voltage sags in distribution systems. In the SI model, the infectious nodes are the bus-bars where faults or connection of big loads could occur. On the other hand, susceptible nodes are the bus-bars in which voltage sags could occur. Parameters that affect the voltage sags propagation as system topology and detection threshold are modeled using the concept of infection rate (β). + A directed graph representing the voltage sags propagation is calculated based on the values of β between every pair of nodes. Finally, the propagation is characterized in terms of fault impedance and nodes are classified using graph theory indexes.\",\"PeriodicalId\":256426,\"journal\":{\"name\":\"2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEPQA.2017.7981685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEPQA.2017.7981685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of voltage sags propagation in distribution grids using a SI epidemic model
The occurrence of different types of faults and connection of heavy loads could cause voltage sags in several busbars in distribution grids. In this paper a Susceptible-Infected (SI) epidemic model is proposed to assess the propagation of voltage sags in distribution systems. In the SI model, the infectious nodes are the bus-bars where faults or connection of big loads could occur. On the other hand, susceptible nodes are the bus-bars in which voltage sags could occur. Parameters that affect the voltage sags propagation as system topology and detection threshold are modeled using the concept of infection rate (β). + A directed graph representing the voltage sags propagation is calculated based on the values of β between every pair of nodes. Finally, the propagation is characterized in terms of fault impedance and nodes are classified using graph theory indexes.