基于语义增强的电影分级的双向协同过滤

H. Oğul, Emrah Ekmekciler
{"title":"基于语义增强的电影分级的双向协同过滤","authors":"H. Oğul, Emrah Ekmekciler","doi":"10.2498/iti.2012.0404","DOIUrl":null,"url":null,"abstract":"A key step in recommendation systems is to estimate if a user would likely enjoy an item who has not considered yet. In this study, a new framework is defined to predict user ratings on new items from previously given ratings by other users. The systems has two major steps: (1) Enhancing available data based on semantic content to get a full item-user matrix, and (2) Predicting the unknown rating using an integrated feature set of “other ratings given by the same user” and “other ratings given to the same item”. This allows the classifier to consider both user similarities and item similarities simultaneously. The system is shown to outperform existing methods in terms of prediction accuracy on a benchmark movie dataset.","PeriodicalId":135105,"journal":{"name":"Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Two-way collaborative filtering on semantically enhanced movie ratings\",\"authors\":\"H. Oğul, Emrah Ekmekciler\",\"doi\":\"10.2498/iti.2012.0404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key step in recommendation systems is to estimate if a user would likely enjoy an item who has not considered yet. In this study, a new framework is defined to predict user ratings on new items from previously given ratings by other users. The systems has two major steps: (1) Enhancing available data based on semantic content to get a full item-user matrix, and (2) Predicting the unknown rating using an integrated feature set of “other ratings given by the same user” and “other ratings given to the same item”. This allows the classifier to consider both user similarities and item similarities simultaneously. The system is shown to outperform existing methods in terms of prediction accuracy on a benchmark movie dataset.\",\"PeriodicalId\":135105,\"journal\":{\"name\":\"Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2498/iti.2012.0404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2498/iti.2012.0404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

推荐系统的一个关键步骤是估计用户是否可能喜欢尚未考虑过的商品。在这项研究中,定义了一个新的框架来预测用户对其他用户先前给出的评分对新项目的评分。该系统有两个主要步骤:(1)基于语义内容增强可用数据以获得完整的物品-用户矩阵;(2)使用“同一用户给出的其他评分”和“同一物品的其他评分”的综合特征集预测未知评分。这允许分类器同时考虑用户相似度和项目相似度。该系统在基准电影数据集的预测精度方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two-way collaborative filtering on semantically enhanced movie ratings
A key step in recommendation systems is to estimate if a user would likely enjoy an item who has not considered yet. In this study, a new framework is defined to predict user ratings on new items from previously given ratings by other users. The systems has two major steps: (1) Enhancing available data based on semantic content to get a full item-user matrix, and (2) Predicting the unknown rating using an integrated feature set of “other ratings given by the same user” and “other ratings given to the same item”. This allows the classifier to consider both user similarities and item similarities simultaneously. The system is shown to outperform existing methods in terms of prediction accuracy on a benchmark movie dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Risk management and business credit scoring GAAP. genetic algorithm with auxiliary populations applied to continuous optimization problems BICIKELJ: Environmental data mining on the bicycle XML schema domain identification Acceptance of verificator by information science students
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1