HTTP会话模型及其在异常HTTP流量检测中的应用

Yi Xie, Xiangnong Huang
{"title":"HTTP会话模型及其在异常HTTP流量检测中的应用","authors":"Yi Xie, Xiangnong Huang","doi":"10.1109/SKG.2010.24","DOIUrl":null,"url":null,"abstract":"Different from most existing studies on Web session identification for commerce purposes, a novel dynamic real time HTTP-session processes description method is presented in this paper for detecting the anomaly HTTP traffic for network boundary. The proposed scheme doesn't rely on presupposed threshold and client/server-side data which are widely used in traditional session detection approaches. A new parameter is defined based on inter-arrival time of HTTP requests. A nonlinear algorithm is introduced for quantization. Trained by the quantized sequences, nonparametric hidden Markov model with explicit state duration is applied to cluster and scout the HTTP-session processes. A probability function is derived for predicting HTTP-session processes. The deviation between the prediction result and the real observation is used for sham Web behavior detection. Experiments based on real HTTP traces of large-scale Web proxies are implemented to valid the proposal.","PeriodicalId":105513,"journal":{"name":"2010 Sixth International Conference on Semantics, Knowledge and Grids","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"HTTP-session Model and Its Application in Anomaly HTTP Traffic Detection\",\"authors\":\"Yi Xie, Xiangnong Huang\",\"doi\":\"10.1109/SKG.2010.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different from most existing studies on Web session identification for commerce purposes, a novel dynamic real time HTTP-session processes description method is presented in this paper for detecting the anomaly HTTP traffic for network boundary. The proposed scheme doesn't rely on presupposed threshold and client/server-side data which are widely used in traditional session detection approaches. A new parameter is defined based on inter-arrival time of HTTP requests. A nonlinear algorithm is introduced for quantization. Trained by the quantized sequences, nonparametric hidden Markov model with explicit state duration is applied to cluster and scout the HTTP-session processes. A probability function is derived for predicting HTTP-session processes. The deviation between the prediction result and the real observation is used for sham Web behavior detection. Experiments based on real HTTP traces of large-scale Web proxies are implemented to valid the proposal.\",\"PeriodicalId\":105513,\"journal\":{\"name\":\"2010 Sixth International Conference on Semantics, Knowledge and Grids\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Sixth International Conference on Semantics, Knowledge and Grids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKG.2010.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Semantics, Knowledge and Grids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKG.2010.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

不同于现有的基于商业目的的Web会话识别研究,本文提出了一种新的用于网络边界异常HTTP流量检测的动态实时HTTP会话过程描述方法。该方案不依赖于传统会话检测方法中广泛使用的预设阈值和客户端/服务器端数据。根据HTTP请求的到达时间定义了一个新的参数。介绍了一种非线性量化算法。通过量化序列训练,将具有显式状态持续时间的非参数隐马尔可夫模型应用于http会话过程的聚类和侦察。推导了一个用于预测http会话进程的概率函数。利用预测结果与实际观测值之间的偏差进行伪Web行为检测。基于大规模Web代理的真实HTTP跟踪实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HTTP-session Model and Its Application in Anomaly HTTP Traffic Detection
Different from most existing studies on Web session identification for commerce purposes, a novel dynamic real time HTTP-session processes description method is presented in this paper for detecting the anomaly HTTP traffic for network boundary. The proposed scheme doesn't rely on presupposed threshold and client/server-side data which are widely used in traditional session detection approaches. A new parameter is defined based on inter-arrival time of HTTP requests. A nonlinear algorithm is introduced for quantization. Trained by the quantized sequences, nonparametric hidden Markov model with explicit state duration is applied to cluster and scout the HTTP-session processes. A probability function is derived for predicting HTTP-session processes. The deviation between the prediction result and the real observation is used for sham Web behavior detection. Experiments based on real HTTP traces of large-scale Web proxies are implemented to valid the proposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Service Semantic Link Network Discovery Based on Markov Structure Optimization Research on Processes I/O Performance in Container-level Virtualization Research on Ontology Based Semantic Service Middleware within Spatial Information System Data Dependency Based Application Description Model in Grid and Its Usage in Scientific Computing Multi-faceted Learning Paths Recommendation Via Semantic Linked Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1