晶体硅太阳能电池选择性发射极图样设计

Yen-Chih Liu, Wei-Yu Chen, Chien-Hung Lin, Chi-Chun Li
{"title":"晶体硅太阳能电池选择性发射极图样设计","authors":"Yen-Chih Liu, Wei-Yu Chen, Chien-Hung Lin, Chi-Chun Li","doi":"10.1109/PVSC.2011.6186387","DOIUrl":null,"url":null,"abstract":"Selective emitter in crystalline silicon solar cells improves the cell efficiency by reducing the recombination in the emitter region while maintaining low contact resistance to the front side electrodes. There are many approaches to realize selective emitter solar cells, some more complicated than the others, but all involve creating heavier doping in the region under electrodes. In this paper, we present the effect of selective emitter patterns, with or without heavy doping under busbars, on the solar cell performance. The results showed basically identical electrical characteristics for both types of patterns. Even though the selective emitter structure in this study was made with a printable dopant approach, the same results could apply to other selective emitter methods, including laser doping and ion implantation. This conclusion points to potentially significant savings in materials and/or processing time as heavy doping is needed only to cover the finger area but not the busbars.","PeriodicalId":373149,"journal":{"name":"2011 37th IEEE Photovoltaic Specialists Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystalline silicon solar cells selective emitter pattern design\",\"authors\":\"Yen-Chih Liu, Wei-Yu Chen, Chien-Hung Lin, Chi-Chun Li\",\"doi\":\"10.1109/PVSC.2011.6186387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selective emitter in crystalline silicon solar cells improves the cell efficiency by reducing the recombination in the emitter region while maintaining low contact resistance to the front side electrodes. There are many approaches to realize selective emitter solar cells, some more complicated than the others, but all involve creating heavier doping in the region under electrodes. In this paper, we present the effect of selective emitter patterns, with or without heavy doping under busbars, on the solar cell performance. The results showed basically identical electrical characteristics for both types of patterns. Even though the selective emitter structure in this study was made with a printable dopant approach, the same results could apply to other selective emitter methods, including laser doping and ion implantation. This conclusion points to potentially significant savings in materials and/or processing time as heavy doping is needed only to cover the finger area but not the busbars.\",\"PeriodicalId\":373149,\"journal\":{\"name\":\"2011 37th IEEE Photovoltaic Specialists Conference\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 37th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2011.6186387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 37th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2011.6186387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

晶体硅太阳能电池中的选择性发射极通过减少发射极区域的复合,同时保持与前侧电极的低接触电阻来提高电池效率。实现选择性发射极太阳能电池的方法有很多,有些比其他的更复杂,但都涉及在电极下的区域产生更重的掺杂。在本文中,我们提出了选择发射极模式,在母线下有或没有重掺杂,对太阳能电池性能的影响。结果显示,这两种模式的电特性基本相同。尽管本研究中的选择性发射极结构是用可打印的掺杂方法制成的,但同样的结果也适用于其他选择性发射极方法,包括激光掺杂和离子注入。这一结论指出了材料和/或处理时间的潜在显著节省,因为只需要覆盖手指区域而不需要覆盖母线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crystalline silicon solar cells selective emitter pattern design
Selective emitter in crystalline silicon solar cells improves the cell efficiency by reducing the recombination in the emitter region while maintaining low contact resistance to the front side electrodes. There are many approaches to realize selective emitter solar cells, some more complicated than the others, but all involve creating heavier doping in the region under electrodes. In this paper, we present the effect of selective emitter patterns, with or without heavy doping under busbars, on the solar cell performance. The results showed basically identical electrical characteristics for both types of patterns. Even though the selective emitter structure in this study was made with a printable dopant approach, the same results could apply to other selective emitter methods, including laser doping and ion implantation. This conclusion points to potentially significant savings in materials and/or processing time as heavy doping is needed only to cover the finger area but not the busbars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MWT meets PERC: Towards 20% efficient industrial silicon solar cells Optimization of phosphoric acid based limited-source-diffusion to obtain high quality emitter for screen printed contacts A compact switched capacitor dc-dc converter based Global Peak Power Point tracker for partially shaded PV arrays of portable equipment Overview of scientific issues involved in selection of polymers for PV applications A generalized and robust method for efficient thin film photovoltaic devices from multinary sulfide nanocrystal inks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1