支持严肃游戏适应的交互式蚁群优化

M. Kickmeier-Rust, Andreas Holzinger
{"title":"支持严肃游戏适应的交互式蚁群优化","authors":"M. Kickmeier-Rust, Andreas Holzinger","doi":"10.17083/ijsg.v6i3.308","DOIUrl":null,"url":null,"abstract":"The success of serious games usually depends on their capabilities to engage learners and to provide them with personalized gaming and learning experiences. Therefore, it is important to equip a game, as an autonomous computer system, with a certain level of understanding about individual learning trajectories and gaming processes. AI and machine learning technologies increasingly enter the field; these technologies often fail, however, since serious games either pose highly complex problems (combining gaming and learning process) or do not provide the extensive data bases that would be required. An interesting new direction is augmenting the strength of AI technologies with human intuition and human cognition. In the present paper, we investigated performance of the MAXMIN Ant System, a combinatorial optimization algorithm, with and without human interventions to the algorithmic procedure. As a testbed, we used a clone of the Travelling Salesman problem, the Travelling Snakesman game. We found some evidence that human interventions result in superior performance than the algorithm alone. The results are discussed regarding the applicability of this pathfinding algorithm in adaptive games, exemplified by Micro Learning Space adaptation systems.","PeriodicalId":196187,"journal":{"name":"Int. J. Serious Games","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Interactive Ant Colony Optimization to Support Adaptation in Serious Games\",\"authors\":\"M. Kickmeier-Rust, Andreas Holzinger\",\"doi\":\"10.17083/ijsg.v6i3.308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The success of serious games usually depends on their capabilities to engage learners and to provide them with personalized gaming and learning experiences. Therefore, it is important to equip a game, as an autonomous computer system, with a certain level of understanding about individual learning trajectories and gaming processes. AI and machine learning technologies increasingly enter the field; these technologies often fail, however, since serious games either pose highly complex problems (combining gaming and learning process) or do not provide the extensive data bases that would be required. An interesting new direction is augmenting the strength of AI technologies with human intuition and human cognition. In the present paper, we investigated performance of the MAXMIN Ant System, a combinatorial optimization algorithm, with and without human interventions to the algorithmic procedure. As a testbed, we used a clone of the Travelling Salesman problem, the Travelling Snakesman game. We found some evidence that human interventions result in superior performance than the algorithm alone. The results are discussed regarding the applicability of this pathfinding algorithm in adaptive games, exemplified by Micro Learning Space adaptation systems.\",\"PeriodicalId\":196187,\"journal\":{\"name\":\"Int. J. Serious Games\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Serious Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17083/ijsg.v6i3.308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Serious Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17083/ijsg.v6i3.308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

严肃游戏的成功通常取决于它们吸引学习者的能力,并为他们提供个性化的游戏和学习体验。因此,作为一个自主的计算机系统,让游戏具备对个人学习轨迹和游戏过程的一定程度的理解是很重要的。人工智能和机器学习技术越来越多地进入该领域;然而,这些技术往往会失败,因为严肃游戏要么会带来高度复杂的问题(结合游戏和学习过程),要么无法提供所需的广泛数据库。一个有趣的新方向是用人类的直觉和人类的认知来增强人工智能技术的力量。在本文中,我们研究了MAXMIN蚂蚁系统(一种组合优化算法)在人工干预和不干预算法过程中的性能。作为测试平台,我们使用了旅行推销员问题的克隆,即《旅行蛇人》游戏。我们发现一些证据表明,人工干预比单独使用算法的效果更好。讨论了该寻路算法在自适应博弈中的适用性,并以微学习空间自适应系统为例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interactive Ant Colony Optimization to Support Adaptation in Serious Games
The success of serious games usually depends on their capabilities to engage learners and to provide them with personalized gaming and learning experiences. Therefore, it is important to equip a game, as an autonomous computer system, with a certain level of understanding about individual learning trajectories and gaming processes. AI and machine learning technologies increasingly enter the field; these technologies often fail, however, since serious games either pose highly complex problems (combining gaming and learning process) or do not provide the extensive data bases that would be required. An interesting new direction is augmenting the strength of AI technologies with human intuition and human cognition. In the present paper, we investigated performance of the MAXMIN Ant System, a combinatorial optimization algorithm, with and without human interventions to the algorithmic procedure. As a testbed, we used a clone of the Travelling Salesman problem, the Travelling Snakesman game. We found some evidence that human interventions result in superior performance than the algorithm alone. The results are discussed regarding the applicability of this pathfinding algorithm in adaptive games, exemplified by Micro Learning Space adaptation systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing Deep Reinforcement Learning (DRL)-based Driving Styles for Non-Player Vehicles How ChatGPT can inspire and improve serious board game design Toward a framework for analyzing adaptive digital games' research effectiveness Editorial, Vol. 10, No. 4 Introduction to the Special Issue on GaLA Conf 2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1