1-范数回归分类

Chuan-Xian Ren, D. Dai, Hong Yan
{"title":"1-范数回归分类","authors":"Chuan-Xian Ren, D. Dai, Hong Yan","doi":"10.1109/ACPR.2011.6166615","DOIUrl":null,"url":null,"abstract":"We present a novel classification method formulating an objective model by ℓ2;1-norm based regression. The ℓ2;1-norm based loss function is robust to outliers or the large variations within given data, and the ℓ2;1-norm regularization term selects correlated samples across the whole training set with grouped sparsity. This constrained optimization problem can be efficiently solved by an iterative procedure. Several benchmark data sets including facial images and gene expression data are used for evaluating the robustness and effectiveness of the new proposed algorithm, and the results show the competitive performance.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ℓ2;1-norm based Regression for Classification\",\"authors\":\"Chuan-Xian Ren, D. Dai, Hong Yan\",\"doi\":\"10.1109/ACPR.2011.6166615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel classification method formulating an objective model by ℓ2;1-norm based regression. The ℓ2;1-norm based loss function is robust to outliers or the large variations within given data, and the ℓ2;1-norm regularization term selects correlated samples across the whole training set with grouped sparsity. This constrained optimization problem can be efficiently solved by an iterative procedure. Several benchmark data sets including facial images and gene expression data are used for evaluating the robustness and effectiveness of the new proposed algorithm, and the results show the competitive performance.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的分类方法,即利用1,2 -范数回归建立目标模型。基于1,2范数的损失函数对异常值或给定数据内的大变化具有鲁棒性,并且1,2范数正则化项在整个训练集中选择具有分组稀疏性的相关样本。这种约束优化问题可以通过迭代过程有效地求解。利用人脸图像和基因表达数据等基准数据集对新算法的鲁棒性和有效性进行了评价,结果表明该算法具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ℓ2;1-norm based Regression for Classification
We present a novel classification method formulating an objective model by ℓ2;1-norm based regression. The ℓ2;1-norm based loss function is robust to outliers or the large variations within given data, and the ℓ2;1-norm regularization term selects correlated samples across the whole training set with grouped sparsity. This constrained optimization problem can be efficiently solved by an iterative procedure. Several benchmark data sets including facial images and gene expression data are used for evaluating the robustness and effectiveness of the new proposed algorithm, and the results show the competitive performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1