{"title":"基于深度CNN的脑肿瘤多分类","authors":"Wadhah Ayadi, W. Elhamzi, M. Atri","doi":"10.1109/SETIT54465.2022.9875468","DOIUrl":null,"url":null,"abstract":"In the last decades, brain tumors are considered one of the mortal cancers in the world. The right tumors detection and identification in the early phases have a significant role to select an accurate treatment. Due to the increasing number of patients and brain tumor types, the manual analyses of Magnetic Resonance Imaging (MRI) images represent a tiring routine and can lead to human errors. In the goal to surpass these problems, an automatic CAD system is needed. We discussed, in this paper, a new model to classify brain tumors using CNN. The suggested scheme is experimentally evaluated on a public dataset. The proposed approach yields a convincing performance compared to previous techniques based on the experimental results.","PeriodicalId":126155,"journal":{"name":"2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Classification of brain tumor based on deep CNN\",\"authors\":\"Wadhah Ayadi, W. Elhamzi, M. Atri\",\"doi\":\"10.1109/SETIT54465.2022.9875468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decades, brain tumors are considered one of the mortal cancers in the world. The right tumors detection and identification in the early phases have a significant role to select an accurate treatment. Due to the increasing number of patients and brain tumor types, the manual analyses of Magnetic Resonance Imaging (MRI) images represent a tiring routine and can lead to human errors. In the goal to surpass these problems, an automatic CAD system is needed. We discussed, in this paper, a new model to classify brain tumors using CNN. The suggested scheme is experimentally evaluated on a public dataset. The proposed approach yields a convincing performance compared to previous techniques based on the experimental results.\",\"PeriodicalId\":126155,\"journal\":{\"name\":\"2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SETIT54465.2022.9875468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SETIT54465.2022.9875468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,脑瘤被认为是世界上最致命的癌症之一。早期正确的肿瘤检测和识别对于选择正确的治疗方案具有重要意义。由于患者数量和脑肿瘤类型的增加,人工分析磁共振成像(MRI)图像是一项累人的工作,可能导致人为错误。为了超越这些问题,需要一个自动化的CAD系统。本文讨论了一种利用CNN对脑肿瘤进行分类的新模型。该方案在一个公共数据集上进行了实验评估。实验结果表明,与以往的方法相比,该方法具有令人信服的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Classification of brain tumor based on deep CNN
In the last decades, brain tumors are considered one of the mortal cancers in the world. The right tumors detection and identification in the early phases have a significant role to select an accurate treatment. Due to the increasing number of patients and brain tumor types, the manual analyses of Magnetic Resonance Imaging (MRI) images represent a tiring routine and can lead to human errors. In the goal to surpass these problems, an automatic CAD system is needed. We discussed, in this paper, a new model to classify brain tumors using CNN. The suggested scheme is experimentally evaluated on a public dataset. The proposed approach yields a convincing performance compared to previous techniques based on the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of Machine Learning Methods for best Accuracy COVID-19 Diagnosis Using Chest X-Ray Images Design and Simulation of a PV System Controlled through a Hybrid INC-PSO Algorithm using XSG Tool Analysing ICT Initiatives towards Smart Policing to Assist African Law Enforcement in Combating Cybercrimes Preliminary Study Of A Smart Computer System For Scholar Support Distributed Consensus Control for Multi-Agent Oscillatory Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1