分布式共享内存系统性能调优策略

E. Peytchev
{"title":"分布式共享内存系统性能调优策略","authors":"E. Peytchev","doi":"10.5013/ijssst.a.22.03.01","DOIUrl":null,"url":null,"abstract":"The increasing demands of distributed and parallel applications require sufficiently high-performance distributed shared memory algorithms capable of providing the service almost steadily. Past and recent decades witnessed the introduction of number of algorithms and strategies aim at tuning and optimizing the performance of distributed systems and at extending the scalability of the systems. This paper presents a new strategy that adjoins an intermediate level of control to the system to scale up the performance via relieving the overhead at the main server. This strategy can be implemented at both setupand run-time.","PeriodicalId":261136,"journal":{"name":"International journal of simulation: systems, science & technology","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Strategy for Tuning the Performance of Distributed Shared Memory Systems\",\"authors\":\"E. Peytchev\",\"doi\":\"10.5013/ijssst.a.22.03.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing demands of distributed and parallel applications require sufficiently high-performance distributed shared memory algorithms capable of providing the service almost steadily. Past and recent decades witnessed the introduction of number of algorithms and strategies aim at tuning and optimizing the performance of distributed systems and at extending the scalability of the systems. This paper presents a new strategy that adjoins an intermediate level of control to the system to scale up the performance via relieving the overhead at the main server. This strategy can be implemented at both setupand run-time.\",\"PeriodicalId\":261136,\"journal\":{\"name\":\"International journal of simulation: systems, science & technology\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of simulation: systems, science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5013/ijssst.a.22.03.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of simulation: systems, science & technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5013/ijssst.a.22.03.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分布式和并行应用程序日益增长的需求需要能够几乎稳定地提供服务的高性能分布式共享内存算法。过去和最近几十年见证了许多旨在调整和优化分布式系统性能以及扩展系统可扩展性的算法和策略的引入。本文提出了一种新的策略,该策略将中间控制层与系统相连接,通过减轻主服务器的开销来扩展性能。此策略可以在设置和运行时实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Strategy for Tuning the Performance of Distributed Shared Memory Systems
The increasing demands of distributed and parallel applications require sufficiently high-performance distributed shared memory algorithms capable of providing the service almost steadily. Past and recent decades witnessed the introduction of number of algorithms and strategies aim at tuning and optimizing the performance of distributed systems and at extending the scalability of the systems. This paper presents a new strategy that adjoins an intermediate level of control to the system to scale up the performance via relieving the overhead at the main server. This strategy can be implemented at both setupand run-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Loss Landscape Perspective and Simulations for Imaging Inverse Problems Based on AI and Neuron Network Training Method The Efficiency of Artificial Recurrent Neural Network (RNN) in Predicting Academic Performance for Students Enhancing Cloud Computing Efficiency: Fuzzy Based Task Classification for Better Resource Management Sentiment Clustering - A Hybrid Approach for Insider Threat Detection Developing a Tool for Modeling and Simulation of Discrete Systems Using Iterative Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1