基于均值移位的快速交通图像滤波算法

Zhang Yu, Shi Zhong-ke, Wang Run-quan
{"title":"基于均值移位的快速交通图像滤波算法","authors":"Zhang Yu, Shi Zhong-ke, Wang Run-quan","doi":"10.1109/IVS.2009.5164272","DOIUrl":null,"url":null,"abstract":"This paper describes a novel fast mean shift algorithm based on an accelerated iteration strategy. This new method focuses on solving the problem of high calculation complexity when high data dimension or large data sets are involved in mean shift. By predicting the mean shift vector, improved method reduces the number of iteration and speed up the calculation. The application of traffic image filtering is provided also. Experiment results of traffic image filtering demonstrate the efficiency of the fast mean shift algorithm.","PeriodicalId":396749,"journal":{"name":"2009 IEEE Intelligent Vehicles Symposium","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fast mean shift based traffic image filtering algorithm\",\"authors\":\"Zhang Yu, Shi Zhong-ke, Wang Run-quan\",\"doi\":\"10.1109/IVS.2009.5164272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a novel fast mean shift algorithm based on an accelerated iteration strategy. This new method focuses on solving the problem of high calculation complexity when high data dimension or large data sets are involved in mean shift. By predicting the mean shift vector, improved method reduces the number of iteration and speed up the calculation. The application of traffic image filtering is provided also. Experiment results of traffic image filtering demonstrate the efficiency of the fast mean shift algorithm.\",\"PeriodicalId\":396749,\"journal\":{\"name\":\"2009 IEEE Intelligent Vehicles Symposium\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2009.5164272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2009.5164272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于加速迭代策略的快速均值移位算法。该方法主要解决了高数据维数或大数据集的均值移位问题。改进方法通过预测平均位移向量,减少了迭代次数,提高了计算速度。并给出了交通图像滤波的应用。交通图像滤波实验结果验证了快速均值移位算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast mean shift based traffic image filtering algorithm
This paper describes a novel fast mean shift algorithm based on an accelerated iteration strategy. This new method focuses on solving the problem of high calculation complexity when high data dimension or large data sets are involved in mean shift. By predicting the mean shift vector, improved method reduces the number of iteration and speed up the calculation. The application of traffic image filtering is provided also. Experiment results of traffic image filtering demonstrate the efficiency of the fast mean shift algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of communication network for the CBTC system Rear-end collision warning system on account of a rear-end monitoring camera Route memorization in real-time data processing using Run-Length Encoding Ego-motion estimation and moving object tracking using multi-layer LIDAR Incorporating contextual information in pedestrian recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1