SMatch

R. T. Possignolo, Josep Renau
{"title":"SMatch","authors":"R. T. Possignolo, Josep Renau","doi":"10.1145/3316781.3317912","DOIUrl":null,"url":null,"abstract":"Designers wait several hours to get synthesis, placement and routing results even for small changes. Commercial FPGA flows allow for resynthesis after code changes, however, they target large code changes with not so effective incremental flows. We propose SMatch, a flow for FPGAs that has a novel incremental elaboration and novel incremental FPGA placement and routing that improves the state-of-the-art by reducing the amount of placement and routing work needed. We evaluate our approach against commercial FPGAs flows. Our method finishes synthesis, placement, and routing in under 30s for most changes of publicly available benchmarks with negligible QoR impact, being over $20 \\times$ faster than existing incremental FPGA flows. CCS CONCEPTS •Hardware → Methodologies for EDA; Logic synthesis.","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SMatch\",\"authors\":\"R. T. Possignolo, Josep Renau\",\"doi\":\"10.1145/3316781.3317912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designers wait several hours to get synthesis, placement and routing results even for small changes. Commercial FPGA flows allow for resynthesis after code changes, however, they target large code changes with not so effective incremental flows. We propose SMatch, a flow for FPGAs that has a novel incremental elaboration and novel incremental FPGA placement and routing that improves the state-of-the-art by reducing the amount of placement and routing work needed. We evaluate our approach against commercial FPGAs flows. Our method finishes synthesis, placement, and routing in under 30s for most changes of publicly available benchmarks with negligible QoR impact, being over $20 \\\\times$ faster than existing incremental FPGA flows. CCS CONCEPTS •Hardware → Methodologies for EDA; Logic synthesis.\",\"PeriodicalId\":391209,\"journal\":{\"name\":\"Proceedings of the 56th Annual Design Automation Conference 2019\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 56th Annual Design Automation Conference 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3316781.3317912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SMatch
Designers wait several hours to get synthesis, placement and routing results even for small changes. Commercial FPGA flows allow for resynthesis after code changes, however, they target large code changes with not so effective incremental flows. We propose SMatch, a flow for FPGAs that has a novel incremental elaboration and novel incremental FPGA placement and routing that improves the state-of-the-art by reducing the amount of placement and routing work needed. We evaluate our approach against commercial FPGAs flows. Our method finishes synthesis, placement, and routing in under 30s for most changes of publicly available benchmarks with negligible QoR impact, being over $20 \times$ faster than existing incremental FPGA flows. CCS CONCEPTS •Hardware → Methodologies for EDA; Logic synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LODESTAR DHOOM Filianore ChipSecure MRLoc
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1