{"title":"可靠的低开销基于仲裁器的物理不可克隆功能,用于资源受限的物联网设备","authors":"S. Tao, E. Dubrova","doi":"10.1145/3031836.3031837","DOIUrl":null,"url":null,"abstract":"Physical unclonable functions (PUFs) are promising hardware security primitives suitable for resource-constrained devices requiring lightweight cryptographic methods. However, PUF responses frequently suffer from instability due to varying environmental conditions such as voltage and temperature. In this paper, we introduce circuit-level techniques to enhance the reliability of delay-based PUFs against temperature variation. We propose a voltage controlled current starved (VCCS) delay element that can effectively reduce temperature sensitivity and thus improve the reliability of PUF responses. Built on the VCCS delay element, two test-case arbiter-based PUF architectures are implemented in a standard 65nm CMOS technology and validated through post-layout Monte-Carlo simulation. Evaluation results show that two proposed PUF designs satisfy requirements on randomness, uniqueness, and reliability over a wide temperature range. Moreover, the proposed approach imposes only a marginal overhead leading to one of the most energy-efficient PUFs in the state-of-the-art.","PeriodicalId":126518,"journal":{"name":"Proceedings of the Fourth Workshop on Cryptography and Security in Computing Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reliable low-overhead arbiter-based physical unclonable functions for resource-constrained IoT devices\",\"authors\":\"S. Tao, E. Dubrova\",\"doi\":\"10.1145/3031836.3031837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical unclonable functions (PUFs) are promising hardware security primitives suitable for resource-constrained devices requiring lightweight cryptographic methods. However, PUF responses frequently suffer from instability due to varying environmental conditions such as voltage and temperature. In this paper, we introduce circuit-level techniques to enhance the reliability of delay-based PUFs against temperature variation. We propose a voltage controlled current starved (VCCS) delay element that can effectively reduce temperature sensitivity and thus improve the reliability of PUF responses. Built on the VCCS delay element, two test-case arbiter-based PUF architectures are implemented in a standard 65nm CMOS technology and validated through post-layout Monte-Carlo simulation. Evaluation results show that two proposed PUF designs satisfy requirements on randomness, uniqueness, and reliability over a wide temperature range. Moreover, the proposed approach imposes only a marginal overhead leading to one of the most energy-efficient PUFs in the state-of-the-art.\",\"PeriodicalId\":126518,\"journal\":{\"name\":\"Proceedings of the Fourth Workshop on Cryptography and Security in Computing Systems\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth Workshop on Cryptography and Security in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3031836.3031837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Workshop on Cryptography and Security in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3031836.3031837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliable low-overhead arbiter-based physical unclonable functions for resource-constrained IoT devices
Physical unclonable functions (PUFs) are promising hardware security primitives suitable for resource-constrained devices requiring lightweight cryptographic methods. However, PUF responses frequently suffer from instability due to varying environmental conditions such as voltage and temperature. In this paper, we introduce circuit-level techniques to enhance the reliability of delay-based PUFs against temperature variation. We propose a voltage controlled current starved (VCCS) delay element that can effectively reduce temperature sensitivity and thus improve the reliability of PUF responses. Built on the VCCS delay element, two test-case arbiter-based PUF architectures are implemented in a standard 65nm CMOS technology and validated through post-layout Monte-Carlo simulation. Evaluation results show that two proposed PUF designs satisfy requirements on randomness, uniqueness, and reliability over a wide temperature range. Moreover, the proposed approach imposes only a marginal overhead leading to one of the most energy-efficient PUFs in the state-of-the-art.