通过归纳推理修复程序漏洞

Yuntong Zhang, Xiang Gao, Gregory J. Duck, Abhik Roychoudhury
{"title":"通过归纳推理修复程序漏洞","authors":"Yuntong Zhang, Xiang Gao, Gregory J. Duck, Abhik Roychoudhury","doi":"10.1145/3533767.3534387","DOIUrl":null,"url":null,"abstract":"Program vulnerabilities, even when detected and reported, are not fixed immediately. The time lag between the reporting and fixing of a vulnerability causes open-source software systems to suffer from significant exposure to possible attacks. In this paper, we propose a counter-example guided inductive inference procedure over program states to define likely invariants at possible fix locations. The likely invariants are constructed via mutation over states at the fix location, which turns out to be more effective for inductive property inference, as compared to the usual greybox fuzzing over program inputs. Once such likely invariants, which we call patch invariants, are identified, we can use them to construct patches via simple patch templates. Our work assumes that only one failing input (representing the exploit) is available to start the repair process. Experiments on the VulnLoc data-set of 39 vulnerabilities, which has been curated in previous works on vulnerability repair, show the effectiveness of our repair procedure. As compared to proposed approaches for vulnerability repair such as CPR or SenX which are based on concolic and symbolic execution respectively, we can repair significantly more vulnerabilities. Our results show the potential for program repair via inductive constraint inference, as opposed to generating repair constraints via deductive/symbolic analysis of a given test-suite.","PeriodicalId":412271,"journal":{"name":"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Program vulnerability repair via inductive inference\",\"authors\":\"Yuntong Zhang, Xiang Gao, Gregory J. Duck, Abhik Roychoudhury\",\"doi\":\"10.1145/3533767.3534387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Program vulnerabilities, even when detected and reported, are not fixed immediately. The time lag between the reporting and fixing of a vulnerability causes open-source software systems to suffer from significant exposure to possible attacks. In this paper, we propose a counter-example guided inductive inference procedure over program states to define likely invariants at possible fix locations. The likely invariants are constructed via mutation over states at the fix location, which turns out to be more effective for inductive property inference, as compared to the usual greybox fuzzing over program inputs. Once such likely invariants, which we call patch invariants, are identified, we can use them to construct patches via simple patch templates. Our work assumes that only one failing input (representing the exploit) is available to start the repair process. Experiments on the VulnLoc data-set of 39 vulnerabilities, which has been curated in previous works on vulnerability repair, show the effectiveness of our repair procedure. As compared to proposed approaches for vulnerability repair such as CPR or SenX which are based on concolic and symbolic execution respectively, we can repair significantly more vulnerabilities. Our results show the potential for program repair via inductive constraint inference, as opposed to generating repair constraints via deductive/symbolic analysis of a given test-suite.\",\"PeriodicalId\":412271,\"journal\":{\"name\":\"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3533767.3534387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533767.3534387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

即使发现并报告了程序漏洞,也不会立即修复。漏洞报告和修复之间的时间差导致开源软件系统严重暴露于可能的攻击之下。在本文中,我们提出了一个反例引导的归纳推理过程,在程序状态上定义可能固定位置的可能不变量。可能的不变量是通过对固定位置的状态进行突变来构建的,与对程序输入进行通常的灰盒模糊分析相比,这种方法对于归纳属性推理更有效。一旦确定了这种可能的不变量(我们称之为补丁不变量),我们就可以使用它们通过简单的补丁模板来构建补丁。我们的工作假设只有一个失败的输入(表示漏洞利用)可用于启动修复过程。在先前漏洞修复工作中整理的39个漏洞的VulnLoc数据集上进行的实验表明,我们的修复过程是有效的。与基于共结肠执行和符号执行的CPR或SenX等漏洞修复方法相比,我们可以修复的漏洞明显更多。我们的结果显示了通过归纳约束推理来修复程序的潜力,而不是通过对给定测试套件的演绎/符号分析来生成修复约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Program vulnerability repair via inductive inference
Program vulnerabilities, even when detected and reported, are not fixed immediately. The time lag between the reporting and fixing of a vulnerability causes open-source software systems to suffer from significant exposure to possible attacks. In this paper, we propose a counter-example guided inductive inference procedure over program states to define likely invariants at possible fix locations. The likely invariants are constructed via mutation over states at the fix location, which turns out to be more effective for inductive property inference, as compared to the usual greybox fuzzing over program inputs. Once such likely invariants, which we call patch invariants, are identified, we can use them to construct patches via simple patch templates. Our work assumes that only one failing input (representing the exploit) is available to start the repair process. Experiments on the VulnLoc data-set of 39 vulnerabilities, which has been curated in previous works on vulnerability repair, show the effectiveness of our repair procedure. As compared to proposed approaches for vulnerability repair such as CPR or SenX which are based on concolic and symbolic execution respectively, we can repair significantly more vulnerabilities. Our results show the potential for program repair via inductive constraint inference, as opposed to generating repair constraints via deductive/symbolic analysis of a given test-suite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
One step further: evaluating interpreters using metamorphic testing Faster mutation analysis with MeMu Test mimicry to assess the exploitability of library vulnerabilities A large-scale study of usability criteria addressed by static analysis tools NCScope: hardware-assisted analyzer for native code in Android apps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1