油田枯竭对Marcellus页岩未来钻探计划的影响

A. Shahkarami, Guochang Wang, Zachary Rohland
{"title":"油田枯竭对Marcellus页岩未来钻探计划的影响","authors":"A. Shahkarami, Guochang Wang, Zachary Rohland","doi":"10.2118/191789-18ERM-MS","DOIUrl":null,"url":null,"abstract":"\n The development of shale assets has reached a point where operators face the challenge of infill drilling. The scope of this project is to investigate the impact of neighboring well pads on the performance of a newly developed well/pad. This paper highlights the differences in production performance of \"old\" pads versus \"new\" well and analyzes how the depletion history of the existing pads affects the performance of new well.\n The study area covers two pads: Pad A and Pad B which have 10 and 12 wells respectively; these wells have been producing since 2016 from the dry gas region of Marcellus Shale in southwestern Pennsylvania. Pad A and Pad B are more than 9000 ft apart, and the region between these two pads has potential for future development. For this project, a 3-D reservoir simulation model that includes both pads was built and calibrated to match past performance of Pad A and Pad B. The calibrated simulation model then was utilized for developing new wells. The reservoir simulation model was used to perform a sensitivity analysis on reservoir characteristics and the impact of Pad A and Pad B's depletion history on the performance of new well(s). The workflow involves optimizing the well spacing of proposed well(s) with/without considering the depletion history.\n Usually, with the very low permeability of shale reservoirs, the depletion history of neighboring wells is expected to affect the performance of newly developed wells. The new wells are considered as a different well pad, and their stimulated reservoir volume does not overlap with the Pad A and Pad B. However, the region average reservoir pressure is reduced due to the Pad A and Pad B production history. In most of shale reservoir numeral simulation studies, the reservoir is considered virgin. The average reservoir pressure potentially impacts the well spacing optimization workflow as well as the designing of an effective well completion job. In this study we compare two scenarios. One scenario considers the depletion history of neighboring well pads and the other one does not. The net present value optimization was done with and without considering the impact of depletion history.\n This project studies the effects of neighboring well pads on production performance of newly developed pad. Compared to the interaction of parent/child well in a single well pad, multi-pad studies are rare primarily because of the high computational cost associated with a multi-pad numerical simulation analysis.","PeriodicalId":298489,"journal":{"name":"Day 4 Wed, October 10, 2018","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Impacts of Field Depletion on Future Infill Drilling Plans in the Marcellus Shale\",\"authors\":\"A. Shahkarami, Guochang Wang, Zachary Rohland\",\"doi\":\"10.2118/191789-18ERM-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The development of shale assets has reached a point where operators face the challenge of infill drilling. The scope of this project is to investigate the impact of neighboring well pads on the performance of a newly developed well/pad. This paper highlights the differences in production performance of \\\"old\\\" pads versus \\\"new\\\" well and analyzes how the depletion history of the existing pads affects the performance of new well.\\n The study area covers two pads: Pad A and Pad B which have 10 and 12 wells respectively; these wells have been producing since 2016 from the dry gas region of Marcellus Shale in southwestern Pennsylvania. Pad A and Pad B are more than 9000 ft apart, and the region between these two pads has potential for future development. For this project, a 3-D reservoir simulation model that includes both pads was built and calibrated to match past performance of Pad A and Pad B. The calibrated simulation model then was utilized for developing new wells. The reservoir simulation model was used to perform a sensitivity analysis on reservoir characteristics and the impact of Pad A and Pad B's depletion history on the performance of new well(s). The workflow involves optimizing the well spacing of proposed well(s) with/without considering the depletion history.\\n Usually, with the very low permeability of shale reservoirs, the depletion history of neighboring wells is expected to affect the performance of newly developed wells. The new wells are considered as a different well pad, and their stimulated reservoir volume does not overlap with the Pad A and Pad B. However, the region average reservoir pressure is reduced due to the Pad A and Pad B production history. In most of shale reservoir numeral simulation studies, the reservoir is considered virgin. The average reservoir pressure potentially impacts the well spacing optimization workflow as well as the designing of an effective well completion job. In this study we compare two scenarios. One scenario considers the depletion history of neighboring well pads and the other one does not. The net present value optimization was done with and without considering the impact of depletion history.\\n This project studies the effects of neighboring well pads on production performance of newly developed pad. Compared to the interaction of parent/child well in a single well pad, multi-pad studies are rare primarily because of the high computational cost associated with a multi-pad numerical simulation analysis.\",\"PeriodicalId\":298489,\"journal\":{\"name\":\"Day 4 Wed, October 10, 2018\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Wed, October 10, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/191789-18ERM-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Wed, October 10, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191789-18ERM-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

页岩资产的开发已经达到了一个临界点,运营商面临着填充钻井的挑战。该项目的范围是研究相邻井台对新开发井/井台性能的影响。本文重点介绍了“老”垫块与“新”井的生产性能差异,并分析了现有垫块的枯竭历史如何影响新井的生产性能。研究区包括两个区块:A区块和B区块,分别有10口和12口井;这些井自2016年以来一直在宾夕法尼亚州西南部马塞勒斯页岩的干气区生产。A区和B区间距超过9000英尺,这两个区域之间的区域具有未来开发的潜力。在该项目中,建立了一个包括两个区块的三维油藏模拟模型,并对其进行了校准,以匹配a区块和b区块过去的开发情况。利用储层模拟模型对储层特征以及a、B区块枯竭历史对新井生产性能的影响进行敏感性分析。该工作流程包括在考虑或不考虑枯竭历史的情况下优化拟井的井距。通常,由于页岩储层的渗透率很低,邻近井的衰竭历史会影响新开发井的性能。新井被认为是一个不同的井群,它们的增产油藏体积不与a和B区块重叠。然而,由于a和B区块的生产历史,该地区的平均油藏压力降低了。在大多数页岩储层数值模拟研究中,储层被认为是未开发的。平均储层压力可能会影响井距优化工作流程以及有效完井作业的设计。在这项研究中,我们比较了两种情况。一种方案考虑邻近井台的枯竭历史,另一种方案则不考虑。净现值优化是在考虑和不考虑损耗历史影响的情况下进行的。本项目研究了新开发井台相邻井台对其生产动态的影响。与单井群中父/子井的相互作用相比,多井群的研究很少,主要是因为与多井群数值模拟分析相关的计算成本很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impacts of Field Depletion on Future Infill Drilling Plans in the Marcellus Shale
The development of shale assets has reached a point where operators face the challenge of infill drilling. The scope of this project is to investigate the impact of neighboring well pads on the performance of a newly developed well/pad. This paper highlights the differences in production performance of "old" pads versus "new" well and analyzes how the depletion history of the existing pads affects the performance of new well. The study area covers two pads: Pad A and Pad B which have 10 and 12 wells respectively; these wells have been producing since 2016 from the dry gas region of Marcellus Shale in southwestern Pennsylvania. Pad A and Pad B are more than 9000 ft apart, and the region between these two pads has potential for future development. For this project, a 3-D reservoir simulation model that includes both pads was built and calibrated to match past performance of Pad A and Pad B. The calibrated simulation model then was utilized for developing new wells. The reservoir simulation model was used to perform a sensitivity analysis on reservoir characteristics and the impact of Pad A and Pad B's depletion history on the performance of new well(s). The workflow involves optimizing the well spacing of proposed well(s) with/without considering the depletion history. Usually, with the very low permeability of shale reservoirs, the depletion history of neighboring wells is expected to affect the performance of newly developed wells. The new wells are considered as a different well pad, and their stimulated reservoir volume does not overlap with the Pad A and Pad B. However, the region average reservoir pressure is reduced due to the Pad A and Pad B production history. In most of shale reservoir numeral simulation studies, the reservoir is considered virgin. The average reservoir pressure potentially impacts the well spacing optimization workflow as well as the designing of an effective well completion job. In this study we compare two scenarios. One scenario considers the depletion history of neighboring well pads and the other one does not. The net present value optimization was done with and without considering the impact of depletion history. This project studies the effects of neighboring well pads on production performance of newly developed pad. Compared to the interaction of parent/child well in a single well pad, multi-pad studies are rare primarily because of the high computational cost associated with a multi-pad numerical simulation analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Degradable Fiber Composition and Shape on Proppant Suspension Innovative Play-Scale Integration of Rate Transient Analysis Data: New Stimulation Indicator and Insights on Stimulated Rock Volume Behavior With Depletion A Workflow to Investigate the Impact of the Spontaneous Imbibition of a Slickwater Fracturing Fluid on the Near Fracture Face Shale Matrix Combining Decline Curve Analysis and Geostatistics to Forecast Gas Production in the Marcellus Shale A Fast EDFM Method for Production Simulation of Complex Fractures in Naturally Fractured Reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1