直流微电网攻击弹性分布式控制

M. Sadabadi
{"title":"直流微电网攻击弹性分布式控制","authors":"M. Sadabadi","doi":"10.23919/ecc54610.2021.9655002","DOIUrl":null,"url":null,"abstract":"This paper develops a resilient distributed control mechanism that ensures voltage regulation and proportional current sharing in DC microgrids while under unknown cyber-attacks. The attackers are assumed to inject false data to the actuators of microgrid control systems. The proposed resilient control algorithm steers the DC microgrid as close as possible to the desired equilibrium regardless of the potential unknown attacks and guarantees average voltage regulation and proportional current sharing in DC microgrids. The proposed resilient control design does not require any knowledge on the nature or the locations of cyber-attacks. By virtue of a graph theoretical approach and a Lyapunov-based framework, it is shown that the proposed resilient control strategy guarantees the stability of DC microgrids. The efficiency and resilience of the proposed distributed control approach is demonstrated via simulation scenarios on a DC microgrid consisting of eight distributed generation units while under attack.","PeriodicalId":105499,"journal":{"name":"2021 European Control Conference (ECC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attack-Resilient Distributed Control in DC Microgrids\",\"authors\":\"M. Sadabadi\",\"doi\":\"10.23919/ecc54610.2021.9655002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a resilient distributed control mechanism that ensures voltage regulation and proportional current sharing in DC microgrids while under unknown cyber-attacks. The attackers are assumed to inject false data to the actuators of microgrid control systems. The proposed resilient control algorithm steers the DC microgrid as close as possible to the desired equilibrium regardless of the potential unknown attacks and guarantees average voltage regulation and proportional current sharing in DC microgrids. The proposed resilient control design does not require any knowledge on the nature or the locations of cyber-attacks. By virtue of a graph theoretical approach and a Lyapunov-based framework, it is shown that the proposed resilient control strategy guarantees the stability of DC microgrids. The efficiency and resilience of the proposed distributed control approach is demonstrated via simulation scenarios on a DC microgrid consisting of eight distributed generation units while under attack.\",\"PeriodicalId\":105499,\"journal\":{\"name\":\"2021 European Control Conference (ECC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ecc54610.2021.9655002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ecc54610.2021.9655002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文开发了一种弹性分布式控制机制,可确保在未知网络攻击下直流微电网的电压调节和比例电流共享。假设攻击者向微电网控制系统的执行器注入虚假数据。所提出的弹性控制算法使直流微电网在不考虑潜在未知攻击的情况下尽可能接近期望的平衡状态,并保证直流微电网的平均电压调节和比例电流共享。提出的弹性控制设计不需要任何关于网络攻击的性质或位置的知识。利用图论方法和基于lyapunov的框架,表明所提出的弹性控制策略保证了直流微电网的稳定性。通过一个由8个分布式发电机组组成的直流微电网在受到攻击时的仿真场景,证明了所提出的分布式控制方法的效率和弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attack-Resilient Distributed Control in DC Microgrids
This paper develops a resilient distributed control mechanism that ensures voltage regulation and proportional current sharing in DC microgrids while under unknown cyber-attacks. The attackers are assumed to inject false data to the actuators of microgrid control systems. The proposed resilient control algorithm steers the DC microgrid as close as possible to the desired equilibrium regardless of the potential unknown attacks and guarantees average voltage regulation and proportional current sharing in DC microgrids. The proposed resilient control design does not require any knowledge on the nature or the locations of cyber-attacks. By virtue of a graph theoretical approach and a Lyapunov-based framework, it is shown that the proposed resilient control strategy guarantees the stability of DC microgrids. The efficiency and resilience of the proposed distributed control approach is demonstrated via simulation scenarios on a DC microgrid consisting of eight distributed generation units while under attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed cyber-attack isolation for large-scale interconnected systems Resilient Consensus Against Epidemic Malicious Attacks Observability Analysis for Spacecraft Attitude Determination using a Single Temperature Sensor* Distributed Leader-Follower Formation Control for Autonomous Vessels based on Model Predictive Control* Demand-Side Management in a Micro-Grid with Multiple Retailers: A Coalitional Game Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1