高海拔三角度辐射地表测量在减轻低吸收大气效应方面的局限性

K. Tomiyasu, P. Dorian, P. Eitner
{"title":"高海拔三角度辐射地表测量在减轻低吸收大气效应方面的局限性","authors":"K. Tomiyasu, P. Dorian, P. Eitner","doi":"10.1109/COMEAS.1995.472336","DOIUrl":null,"url":null,"abstract":"The remote measurement of geosurface radiances using microwave and thermal infrared radiometers from satellite platforms has been an attractive and challenging goal. A significant impediment is data corruption by the intervening atmosphere. Attempts to correct for the atmosphere apparently have not been reported at microwave frequencies, but have been addressed at thermal infrared wavelengths. For thermal infrared, papers have been written reporting on multi-spectral and multi-angle measurements to infer the absolute value of geosurface temperature. A dual-angle radiometric technique to measure sea-surface temperature from an aircraft has been reported by Saunders. His technique made measurements at zenith angles near 0/spl deg/ and 60/spl deg/, and the reported absolute accuracies are 0.2 degree C. Since the path length was short with small path loss and insignificant path radiance, two unknowns are involved and measurements at two angles were sufficient for solution. As the platform altitude is increased, the number of significant factors increases, such as upwelling radiance from a lossy atmosphere and downwelling radiance scattered from the surface. With an increase in the number of significant factors, the number of independent measurements must also increase for solution. In this paper, an attempt is made to examine the utility of a triple-angle measurement method on the same area or pixel to extend the earlier dual-angle measurement technique. It is assumed that the next significant factor for some examples maybe the radiance from the intervening path. The purposes of the present approximate analysis are to quantify the surface radiance and its uncertainty due to measurement limitations. It is believed that there are scenarios within limited latitudinal zones, local times, and seasons where the assumed path characteristics are reasonably valid, and the error would be a small bias term to the calculated values.<<ETX>>","PeriodicalId":274878,"journal":{"name":"Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Limitations of triple-angle radiometric geosurface measurements from high altitude to mitigate low-absorption atmospheric effects\",\"authors\":\"K. Tomiyasu, P. Dorian, P. Eitner\",\"doi\":\"10.1109/COMEAS.1995.472336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The remote measurement of geosurface radiances using microwave and thermal infrared radiometers from satellite platforms has been an attractive and challenging goal. A significant impediment is data corruption by the intervening atmosphere. Attempts to correct for the atmosphere apparently have not been reported at microwave frequencies, but have been addressed at thermal infrared wavelengths. For thermal infrared, papers have been written reporting on multi-spectral and multi-angle measurements to infer the absolute value of geosurface temperature. A dual-angle radiometric technique to measure sea-surface temperature from an aircraft has been reported by Saunders. His technique made measurements at zenith angles near 0/spl deg/ and 60/spl deg/, and the reported absolute accuracies are 0.2 degree C. Since the path length was short with small path loss and insignificant path radiance, two unknowns are involved and measurements at two angles were sufficient for solution. As the platform altitude is increased, the number of significant factors increases, such as upwelling radiance from a lossy atmosphere and downwelling radiance scattered from the surface. With an increase in the number of significant factors, the number of independent measurements must also increase for solution. In this paper, an attempt is made to examine the utility of a triple-angle measurement method on the same area or pixel to extend the earlier dual-angle measurement technique. It is assumed that the next significant factor for some examples maybe the radiance from the intervening path. The purposes of the present approximate analysis are to quantify the surface radiance and its uncertainty due to measurement limitations. It is believed that there are scenarios within limited latitudinal zones, local times, and seasons where the assumed path characteristics are reasonably valid, and the error would be a small bias term to the calculated values.<<ETX>>\",\"PeriodicalId\":274878,\"journal\":{\"name\":\"Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMEAS.1995.472336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMEAS.1995.472336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用卫星平台上的微波和热红外辐射计对地表面辐射进行远程测量一直是一个具有吸引力和挑战性的目标。一个重要的障碍是大气干扰造成的数据损坏。在微波频率上对大气进行校正的尝试显然没有报道,但已经在热红外波长上进行了处理。对于热红外,已经有论文报道了多光谱和多角度测量来推断地表面温度的绝对值。桑德斯报告了一种从飞机上测量海面温度的双角度辐射测量技术。他的技术在接近0/spl°/和60/spl°/的天顶角进行测量,报告的绝对精度为0.2°c。由于路径长度短,路径损失小,路径辐射不显著,涉及两个未知因素,两个角度的测量足以解决。随着平台高度的增加,重要因子的数量增加,例如来自有损大气的上涌辐射和来自地表散射的下涌辐射。随着显著因子数量的增加,溶液中独立测量的数量也必须增加。本文尝试在同一区域或像素上使用三角度测量方法来扩展先前的双角度测量技术。在一些例子中,我们假设下一个重要因素可能是来自中间路径的辐射。本近似分析的目的是量化表面辐射及其由于测量限制而产生的不确定度。我们认为,在有限的纬度带、当地时间和季节内,假设的路径特征是合理有效的,并且误差对计算值来说是一个小的偏差项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Limitations of triple-angle radiometric geosurface measurements from high altitude to mitigate low-absorption atmospheric effects
The remote measurement of geosurface radiances using microwave and thermal infrared radiometers from satellite platforms has been an attractive and challenging goal. A significant impediment is data corruption by the intervening atmosphere. Attempts to correct for the atmosphere apparently have not been reported at microwave frequencies, but have been addressed at thermal infrared wavelengths. For thermal infrared, papers have been written reporting on multi-spectral and multi-angle measurements to infer the absolute value of geosurface temperature. A dual-angle radiometric technique to measure sea-surface temperature from an aircraft has been reported by Saunders. His technique made measurements at zenith angles near 0/spl deg/ and 60/spl deg/, and the reported absolute accuracies are 0.2 degree C. Since the path length was short with small path loss and insignificant path radiance, two unknowns are involved and measurements at two angles were sufficient for solution. As the platform altitude is increased, the number of significant factors increases, such as upwelling radiance from a lossy atmosphere and downwelling radiance scattered from the surface. With an increase in the number of significant factors, the number of independent measurements must also increase for solution. In this paper, an attempt is made to examine the utility of a triple-angle measurement method on the same area or pixel to extend the earlier dual-angle measurement technique. It is assumed that the next significant factor for some examples maybe the radiance from the intervening path. The purposes of the present approximate analysis are to quantify the surface radiance and its uncertainty due to measurement limitations. It is believed that there are scenarios within limited latitudinal zones, local times, and seasons where the assumed path characteristics are reasonably valid, and the error would be a small bias term to the calculated values.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Moisture in a grass canopy from SSM/I radiobrightness Identification method on mathematical model of terrain profile section and experimental results by the millimeter wave altimeter X-band Doppler-radar and radiometer system Remote sensing of scattering surface if phase information in registered data is distorted or absent A preliminary design procedure to find the aperture diameter and other basic parameters of a feed able to satisfy radiometric requirements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1