一种新的基于混沌的多模态助听器轻量化图像加密方案

A. Shah, Ahsan Adeel, Jawad Ahmad, A. Al-Dubai, M. Gogate, A. Bishnu, Muhammad Diyan, Tassadaq Hussain, K. Dashtipour, T. Ratnarajah, Amir Hussain
{"title":"一种新的基于混沌的多模态助听器轻量化图像加密方案","authors":"A. Shah, Ahsan Adeel, Jawad Ahmad, A. Al-Dubai, M. Gogate, A. Bishnu, Muhammad Diyan, Tassadaq Hussain, K. Dashtipour, T. Ratnarajah, Amir Hussain","doi":"10.1109/DSC54232.2022.9888823","DOIUrl":null,"url":null,"abstract":"Multimodal hearing aids (HAs) aim to deliver more intelligible audio in noisy environments by contextually sensing and processing data in the form of not only audio but also visual information (e.g. lip reading). Machine learning techniques can play a pivotal role for the contextual processing of multimodal data, however, due to the low computational power of the HA devices, the data must be processed either on the edge or cloud which, in turn, poses privacy concerns for the users' sensitive data. Existing literature proposes several techniques for data encryption but their computational complexity is a major bottleneck to meet strict latency requirements for the development of future multi-modal hearing aids. To overcome this problem, this paper proposes a novel real-time audio/visual data encryption scheme based on chaos-based encryption using the Tangent-Delay Ellipse Reflecting Cavity-Map System (TD-ERCS) and Non-linear Chaotic (NCA) Algorithms. The results achieved against different security analysis parameters such as Correlation Coefficient, Unified Averaged Changed Intensity (UACI), Key Sensitivity Analysis, Number of Changing Pixel Rate (NPCR), Mean-Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Entropy test, and Chi-test, indicate that the proposed scheme is more secure with increased key-space against modern brute-force attacks and lightweight as compared to existing schemes.","PeriodicalId":368903,"journal":{"name":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Chaos-based Light-weight Image Encryption Scheme for Multi-modal Hearing Aids\",\"authors\":\"A. Shah, Ahsan Adeel, Jawad Ahmad, A. Al-Dubai, M. Gogate, A. Bishnu, Muhammad Diyan, Tassadaq Hussain, K. Dashtipour, T. Ratnarajah, Amir Hussain\",\"doi\":\"10.1109/DSC54232.2022.9888823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal hearing aids (HAs) aim to deliver more intelligible audio in noisy environments by contextually sensing and processing data in the form of not only audio but also visual information (e.g. lip reading). Machine learning techniques can play a pivotal role for the contextual processing of multimodal data, however, due to the low computational power of the HA devices, the data must be processed either on the edge or cloud which, in turn, poses privacy concerns for the users' sensitive data. Existing literature proposes several techniques for data encryption but their computational complexity is a major bottleneck to meet strict latency requirements for the development of future multi-modal hearing aids. To overcome this problem, this paper proposes a novel real-time audio/visual data encryption scheme based on chaos-based encryption using the Tangent-Delay Ellipse Reflecting Cavity-Map System (TD-ERCS) and Non-linear Chaotic (NCA) Algorithms. The results achieved against different security analysis parameters such as Correlation Coefficient, Unified Averaged Changed Intensity (UACI), Key Sensitivity Analysis, Number of Changing Pixel Rate (NPCR), Mean-Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Entropy test, and Chi-test, indicate that the proposed scheme is more secure with increased key-space against modern brute-force attacks and lightweight as compared to existing schemes.\",\"PeriodicalId\":368903,\"journal\":{\"name\":\"2022 IEEE Conference on Dependable and Secure Computing (DSC)\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Conference on Dependable and Secure Computing (DSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSC54232.2022.9888823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC54232.2022.9888823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多模态助听器(HAs)旨在通过上下文感知和处理音频和视觉信息(例如唇读)形式的数据,在嘈杂的环境中提供更容易理解的音频。机器学习技术可以在多模态数据的上下文处理中发挥关键作用,然而,由于高可用性设备的计算能力较低,数据必须在边缘或云中处理,这反过来又给用户的敏感数据带来了隐私问题。现有文献提出了几种数据加密技术,但它们的计算复杂性是满足未来多模态助听器开发严格延迟要求的主要瓶颈。为了克服这一问题,本文提出了一种新的基于混沌的实时音视频数据加密方案,该方案采用切线延迟椭圆反射空腔映射系统(TD-ERCS)和非线性混沌(NCA)算法。针对相关系数、统一平均变化强度(UACI)、密钥敏感性分析、变化像素率(NPCR)、均方误差(MSE)、峰值信噪比(PSNR)、熵检验和chi检验等不同安全分析参数的结果表明,与现有方案相比,该方案具有更高的安全性,增加了密钥空间,可以抵御现代暴力攻击,并且轻量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Chaos-based Light-weight Image Encryption Scheme for Multi-modal Hearing Aids
Multimodal hearing aids (HAs) aim to deliver more intelligible audio in noisy environments by contextually sensing and processing data in the form of not only audio but also visual information (e.g. lip reading). Machine learning techniques can play a pivotal role for the contextual processing of multimodal data, however, due to the low computational power of the HA devices, the data must be processed either on the edge or cloud which, in turn, poses privacy concerns for the users' sensitive data. Existing literature proposes several techniques for data encryption but their computational complexity is a major bottleneck to meet strict latency requirements for the development of future multi-modal hearing aids. To overcome this problem, this paper proposes a novel real-time audio/visual data encryption scheme based on chaos-based encryption using the Tangent-Delay Ellipse Reflecting Cavity-Map System (TD-ERCS) and Non-linear Chaotic (NCA) Algorithms. The results achieved against different security analysis parameters such as Correlation Coefficient, Unified Averaged Changed Intensity (UACI), Key Sensitivity Analysis, Number of Changing Pixel Rate (NPCR), Mean-Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Entropy test, and Chi-test, indicate that the proposed scheme is more secure with increased key-space against modern brute-force attacks and lightweight as compared to existing schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Symbolon: Enabling Flexible Multi-device-based User Authentication A Survey on Explainable Anomaly Detection for Industrial Internet of Things Optimising user security recommendations for AI-powered smart-homes A Scary Peek into The Future: Advanced Persistent Threats in Emerging Computing Environments LAEG: Leak-based AEG using Dynamic Binary Analysis to Defeat ASLR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1