O. Ghahabi, V. Fischer
{"title":"EML Submission to Albayzin 2018 Speaker Diarization Challenge","authors":"O. Ghahabi, V. Fischer","doi":"10.21437/iberspeech.2018-44","DOIUrl":null,"url":null,"abstract":"Speaker diarization, who is speaking when, is one of the most challenging tasks in speaker recognition, as usually no prior information is available about the identity and the number of the speakers in an audio recording. The task will be more challenging when there is some noise or music on the background and the speakers are changed more frequently. This usually hap-pens in broadcast news conversations. In this paper, we use the EML speaker diarization system as a participation to the recent Albayzin Evaluation challenge. The EML system uses a real-time robust algorithm to make decision about the identity of the speakers approximately every 2 sec. The experimental results on about 16 hours of the developing data provided in the challenge show a reasonable accuracy of the system with a very low computational cost.","PeriodicalId":115963,"journal":{"name":"IberSPEECH Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IberSPEECH Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/iberspeech.2018-44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于在录音中通常没有关于说话人的身份和人数的先验信息,说话人在什么时候说话是说话人识别中最具挑战性的任务之一。当有一些噪音或音乐作为背景,并且扬声器更换得更频繁时,这项任务将更具挑战性。这通常发生在广播新闻对话中。在本文中,我们使用EML说话人分类系统来参与最近的Albayzin评估挑战。EML系统使用一种实时鲁棒算法,大约每2秒就能对说话人的身份做出判断。对挑战中提供的约16小时的开发数据进行的实验结果表明,该系统具有合理的精度和非常低的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EML Submission to Albayzin 2018 Speaker Diarization Challenge
Speaker diarization, who is speaking when, is one of the most challenging tasks in speaker recognition, as usually no prior information is available about the identity and the number of the speakers in an audio recording. The task will be more challenging when there is some noise or music on the background and the speakers are changed more frequently. This usually hap-pens in broadcast news conversations. In this paper, we use the EML speaker diarization system as a participation to the recent Albayzin Evaluation challenge. The EML system uses a real-time robust algorithm to make decision about the identity of the speakers approximately every 2 sec. The experimental results on about 16 hours of the developing data provided in the challenge show a reasonable accuracy of the system with a very low computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Recurrent Neural Network Approach to Audio Segmentation for Broadcast Domain Data The Intelligent Voice System for the IberSPEECH-RTVE 2018 Speaker Diarization Challenge AUDIAS-CEU: A Language-independent approach for the Query-by-Example Spoken Term Detection task of the Search on Speech ALBAYZIN 2018 evaluation The GTM-UVIGO System for Audiovisual Diarization Baseline Acoustic Models for Brazilian Portuguese Using Kaldi Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1