AA2519铝合金在T6和T8回火条件下动态行为的比较研究

Adewale Olasumboye, G. Owolabi, O. A. Koya, H. Whitworth, N. Yilmaz
{"title":"AA2519铝合金在T6和T8回火条件下动态行为的比较研究","authors":"Adewale Olasumboye, G. Owolabi, O. A. Koya, H. Whitworth, N. Yilmaz","doi":"10.1115/imece2019-10978","DOIUrl":null,"url":null,"abstract":"\n This study investigates the dynamic response of AA2519 aluminum alloy in T6 temper condition during plastic deformation at high strain rates. The aim was to determine how the T6 temper condition affects the flow stress response, strength properties and microstructural morphologies of the alloy when impacted under compression at high strain rates. The specimens (with aspect ratio, L/D = 0.8) of the as-cast alloy used were received in the T8 temper condition and further heat-treated to the T6 temper condition based on the standard ASTM temper designation procedures. Split-Hopkinson pressure bar experiment was used to generate true stress-strain data for the alloy in the range of 1000–3500 /s strain rates while high-speed cameras were used to monitor the test compliance with strain-rate constancy measures. The microstructures of the as received and deformed specimens were assessed and compared for possible disparities in their initial microstructures and post-deformation changes, respectively, using optical microscopy. Results showed no clear evidence of strain-rate dependency in the dynamic yield strength behavior of T6-temper designated alloy while exhibiting a negative trend in its flow stress response. On the contrary, AA2519-T8 showed marginal but positive response in both yield strength and flow behavior for the range of strain rates tested. Post-deformation photomicrographs show clear disparities in the alloys’ initial microstructures in terms of the second-phase particle size differences, population density and, distribution; and in the morphological changes which occurred in the microstructures of the different materials during large plastic deformation. AA2519-T6 showed a higher susceptibility to adiabatic shear localization than AA2519-T8, with deformed and bifurcating transformed band occurring at 3000 /s followed by failure at 3500 /s.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of the Dynamic Behavior of AA2519 Aluminum Alloy in T6 and T8 Temper Conditions\",\"authors\":\"Adewale Olasumboye, G. Owolabi, O. A. Koya, H. Whitworth, N. Yilmaz\",\"doi\":\"10.1115/imece2019-10978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study investigates the dynamic response of AA2519 aluminum alloy in T6 temper condition during plastic deformation at high strain rates. The aim was to determine how the T6 temper condition affects the flow stress response, strength properties and microstructural morphologies of the alloy when impacted under compression at high strain rates. The specimens (with aspect ratio, L/D = 0.8) of the as-cast alloy used were received in the T8 temper condition and further heat-treated to the T6 temper condition based on the standard ASTM temper designation procedures. Split-Hopkinson pressure bar experiment was used to generate true stress-strain data for the alloy in the range of 1000–3500 /s strain rates while high-speed cameras were used to monitor the test compliance with strain-rate constancy measures. The microstructures of the as received and deformed specimens were assessed and compared for possible disparities in their initial microstructures and post-deformation changes, respectively, using optical microscopy. Results showed no clear evidence of strain-rate dependency in the dynamic yield strength behavior of T6-temper designated alloy while exhibiting a negative trend in its flow stress response. On the contrary, AA2519-T8 showed marginal but positive response in both yield strength and flow behavior for the range of strain rates tested. Post-deformation photomicrographs show clear disparities in the alloys’ initial microstructures in terms of the second-phase particle size differences, population density and, distribution; and in the morphological changes which occurred in the microstructures of the different materials during large plastic deformation. AA2519-T6 showed a higher susceptibility to adiabatic shear localization than AA2519-T8, with deformed and bifurcating transformed band occurring at 3000 /s followed by failure at 3500 /s.\",\"PeriodicalId\":375383,\"journal\":{\"name\":\"Volume 9: Mechanics of Solids, Structures, and Fluids\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Mechanics of Solids, Structures, and Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-10978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Mechanics of Solids, Structures, and Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-10978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了AA2519铝合金在T6回火条件下高应变速率塑性变形过程中的动态响应。目的是确定T6回火条件如何影响合金在高应变率压缩下的流动应力响应、强度性能和显微组织形态。使用的铸态合金试样(长径比L/D = 0.8)在T8回火状态下接收,并根据标准ASTM回火指定程序进一步热处理至T6回火状态。采用Split-Hopkinson压杆实验,生成合金在1000 ~ 3500 /s应变速率范围内的真实应力-应变数据,并使用高速摄像机监测试验符合应变速率常数测量。利用光学显微镜对接收和变形后的试样的显微组织进行了评估和比较,以确定其初始显微组织和变形后变化的可能差异。结果表明,t6回火合金的动态屈服强度行为不存在明显的应变速率依赖性,而流变应力响应呈负向变化。相反,在应变速率范围内,AA2519-T8在屈服强度和流动行为上都表现出边际但正的响应。变形后显微形貌显示合金的初始组织在第二相粒度、密度和分布等方面存在明显差异;以及不同材料在大塑性变形过程中微观组织的形态变化。AA2519-T6对绝热剪切局部化的敏感性高于AA2519-T8,在3000 /s时出现变形和分叉转变带,在3500 /s时发生破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Study of the Dynamic Behavior of AA2519 Aluminum Alloy in T6 and T8 Temper Conditions
This study investigates the dynamic response of AA2519 aluminum alloy in T6 temper condition during plastic deformation at high strain rates. The aim was to determine how the T6 temper condition affects the flow stress response, strength properties and microstructural morphologies of the alloy when impacted under compression at high strain rates. The specimens (with aspect ratio, L/D = 0.8) of the as-cast alloy used were received in the T8 temper condition and further heat-treated to the T6 temper condition based on the standard ASTM temper designation procedures. Split-Hopkinson pressure bar experiment was used to generate true stress-strain data for the alloy in the range of 1000–3500 /s strain rates while high-speed cameras were used to monitor the test compliance with strain-rate constancy measures. The microstructures of the as received and deformed specimens were assessed and compared for possible disparities in their initial microstructures and post-deformation changes, respectively, using optical microscopy. Results showed no clear evidence of strain-rate dependency in the dynamic yield strength behavior of T6-temper designated alloy while exhibiting a negative trend in its flow stress response. On the contrary, AA2519-T8 showed marginal but positive response in both yield strength and flow behavior for the range of strain rates tested. Post-deformation photomicrographs show clear disparities in the alloys’ initial microstructures in terms of the second-phase particle size differences, population density and, distribution; and in the morphological changes which occurred in the microstructures of the different materials during large plastic deformation. AA2519-T6 showed a higher susceptibility to adiabatic shear localization than AA2519-T8, with deformed and bifurcating transformed band occurring at 3000 /s followed by failure at 3500 /s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macro-Scale Geometric Voids to Alter Stress Wave Propagation in Solids Finite Element Analysis of the Effect of Porosity on the Plasticity and Damage Behavior of Mg AZ31 and Al 6061 T651 Alloys Effects of Drive Side Pressure Angle on Gear Fatigue Crack Propagation Life for Spur Gears With Symmetric and Asymmetric Teeth Guidelines and Limitations of the Compact Compression Specimen Modelling Stress Softening and Necking Phenomena in Double Network Hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1