武器探测目视解释的目标识别与定位

Narit Hnoohom, Pitchaya Chotivatunyu, Sumeth Yuenyong, K. Wongpatikaseree, S. Mekruksavanich, A. Jitpattanakul
{"title":"武器探测目视解释的目标识别与定位","authors":"Narit Hnoohom, Pitchaya Chotivatunyu, Sumeth Yuenyong, K. Wongpatikaseree, S. Mekruksavanich, A. Jitpattanakul","doi":"10.1109/RI2C56397.2022.9910301","DOIUrl":null,"url":null,"abstract":"Weapon detection is a difficult task that requires accurate identification of weapon objects in images. The object localization approach is mostly used because it combines a gradient with a convolutional layer to create a map of key locations on the image. This paper presents an Eigen-CAM method to localize and detect objects in an image for a Faster Region-based Convolutional Neural Network (Faster R-CNN) residual neural network (ResNet 50) model, giving a visual explanation. The Internet Movie Firearms Database (IMFDB) was used to train a deep learning model with the Faster R-CNN ResNet 50 model of the pre-trained PyTorch framework. Experimental results indicated that the Faster R-CNN ResNet 50 model achieved the highest mAP of 0.497 with 0.5 IoU. The Eigen-CAM method performed effectively for visual image representation.","PeriodicalId":403083,"journal":{"name":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Object Identification and Localization of Visual Explanation for Weapon Detection\",\"authors\":\"Narit Hnoohom, Pitchaya Chotivatunyu, Sumeth Yuenyong, K. Wongpatikaseree, S. Mekruksavanich, A. Jitpattanakul\",\"doi\":\"10.1109/RI2C56397.2022.9910301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weapon detection is a difficult task that requires accurate identification of weapon objects in images. The object localization approach is mostly used because it combines a gradient with a convolutional layer to create a map of key locations on the image. This paper presents an Eigen-CAM method to localize and detect objects in an image for a Faster Region-based Convolutional Neural Network (Faster R-CNN) residual neural network (ResNet 50) model, giving a visual explanation. The Internet Movie Firearms Database (IMFDB) was used to train a deep learning model with the Faster R-CNN ResNet 50 model of the pre-trained PyTorch framework. Experimental results indicated that the Faster R-CNN ResNet 50 model achieved the highest mAP of 0.497 with 0.5 IoU. The Eigen-CAM method performed effectively for visual image representation.\",\"PeriodicalId\":403083,\"journal\":{\"name\":\"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RI2C56397.2022.9910301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RI2C56397.2022.9910301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

武器检测是一项艰巨的任务,需要在图像中准确识别武器目标。对象定位方法主要使用,因为它结合了梯度和卷积层来创建图像上关键位置的地图。本文提出了一种基于快速区域卷积神经网络(Faster R-CNN)残差神经网络(ResNet 50)模型的特征- cam方法来定位和检测图像中的目标,并给出了可视化的解释。使用Internet Movie Firearms Database (IMFDB)与预训练PyTorch框架的Faster R-CNN ResNet 50模型训练深度学习模型。实验结果表明,Faster R-CNN ResNet 50模型在0.5 IoU时获得了最高的mAP值0.497。Eigen-CAM方法对视觉图像表示效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object Identification and Localization of Visual Explanation for Weapon Detection
Weapon detection is a difficult task that requires accurate identification of weapon objects in images. The object localization approach is mostly used because it combines a gradient with a convolutional layer to create a map of key locations on the image. This paper presents an Eigen-CAM method to localize and detect objects in an image for a Faster Region-based Convolutional Neural Network (Faster R-CNN) residual neural network (ResNet 50) model, giving a visual explanation. The Internet Movie Firearms Database (IMFDB) was used to train a deep learning model with the Faster R-CNN ResNet 50 model of the pre-trained PyTorch framework. Experimental results indicated that the Faster R-CNN ResNet 50 model achieved the highest mAP of 0.497 with 0.5 IoU. The Eigen-CAM method performed effectively for visual image representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperparameter Tuning in Convolutional Neural Network for Face Touching Activity Recognition using Accelerometer Data RI2C 2022 Cover Page CNN based Automatic Detection of Defective Photovoltaic Modules using Aerial Imagery Metaverse for Developing Engineering Competency A Comparative Study of Deep Convolutional Neural Networks for Car Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1