基于特征分解的最大似然运动分割

A. Robles-Kelly, E. Hancock
{"title":"基于特征分解的最大似然运动分割","authors":"A. Robles-Kelly, E. Hancock","doi":"10.1109/ICIAP.2001.956986","DOIUrl":null,"url":null,"abstract":"This paper presents an iterative maximum likelihood framework for motion segmentation. Our representation of the segmentation problem is based on a similarity matrix for the motion vectors for pairs of pixel blocks. By applying eigendecomposition to the similarity matrix, we develop a maximum likelihood method for grouping the pixel blocks into objects which share a common motion vector. We experiment with the resulting clustering method on a number of real-world motion sequences. Here ground truth data indicates that the method can result in motion classification errors as low as 3%.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Maximum likelihood motion segmentation using eigendecomposition\",\"authors\":\"A. Robles-Kelly, E. Hancock\",\"doi\":\"10.1109/ICIAP.2001.956986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an iterative maximum likelihood framework for motion segmentation. Our representation of the segmentation problem is based on a similarity matrix for the motion vectors for pairs of pixel blocks. By applying eigendecomposition to the similarity matrix, we develop a maximum likelihood method for grouping the pixel blocks into objects which share a common motion vector. We experiment with the resulting clustering method on a number of real-world motion sequences. Here ground truth data indicates that the method can result in motion classification errors as low as 3%.\",\"PeriodicalId\":365627,\"journal\":{\"name\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2001.956986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.956986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种用于运动分割的迭代极大似然框架。我们的分割问题的表示是基于对像素块的运动向量的相似矩阵。通过将特征分解应用于相似矩阵,我们开发了一种最大似然方法,将像素块分组为共享共同运动向量的对象。我们在许多真实世界的运动序列上实验了得到的聚类方法。这里的地面真实数据表明,该方法可以导致低至3%的运动分类误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum likelihood motion segmentation using eigendecomposition
This paper presents an iterative maximum likelihood framework for motion segmentation. Our representation of the segmentation problem is based on a similarity matrix for the motion vectors for pairs of pixel blocks. By applying eigendecomposition to the similarity matrix, we develop a maximum likelihood method for grouping the pixel blocks into objects which share a common motion vector. We experiment with the resulting clustering method on a number of real-world motion sequences. Here ground truth data indicates that the method can result in motion classification errors as low as 3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Circle detection based on orientation matching Towards teleconferencing by view synthesis and large-baseline stereo Learning and caricaturing the face space using self-organization and Hebbian learning for face processing Bayesian face recognition with deformable image models Using feature-vector based analysis, based on principal component analysis and independent component analysis, for analysing hyperspectral images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1