基于人工神经网络的气固流动模式识别

IEEA '18 Pub Date : 2018-03-28 DOI:10.1145/3208854.3208892
F. Fu, Shimin Wang
{"title":"基于人工神经网络的气固流动模式识别","authors":"F. Fu, Shimin Wang","doi":"10.1145/3208854.3208892","DOIUrl":null,"url":null,"abstract":"Flow patterns identification of the gas--solid flow in pneumatic transport pipelines is significant for the optimized design and operation of the pneumatic conveying system. The objective of this work is to training an Artificial Neural Network(ANN) to identify flow patterns (suspension flow, laminar flow, dense-dilute flow and dune flow) of the gas-solid flow in a horizontal pneumatic conveying pipeline. The performance of the ANN models was evaluated respectively using Hurst exponent of a ring-shaped electrode's output signal and Hurst exponent matrix of an electrostatic sensor array's output signals. Results show a higher recognition rate can be got by using the electrode sensor array, and the improvement is 5% for suspension flow, 9% for laminar flow and 13% for dense-dilute flow.","PeriodicalId":365707,"journal":{"name":"IEEA '18","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Gas-solid Flow Patterns Identification Based on Artificial Neural Network\",\"authors\":\"F. Fu, Shimin Wang\",\"doi\":\"10.1145/3208854.3208892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flow patterns identification of the gas--solid flow in pneumatic transport pipelines is significant for the optimized design and operation of the pneumatic conveying system. The objective of this work is to training an Artificial Neural Network(ANN) to identify flow patterns (suspension flow, laminar flow, dense-dilute flow and dune flow) of the gas-solid flow in a horizontal pneumatic conveying pipeline. The performance of the ANN models was evaluated respectively using Hurst exponent of a ring-shaped electrode's output signal and Hurst exponent matrix of an electrostatic sensor array's output signals. Results show a higher recognition rate can be got by using the electrode sensor array, and the improvement is 5% for suspension flow, 9% for laminar flow and 13% for dense-dilute flow.\",\"PeriodicalId\":365707,\"journal\":{\"name\":\"IEEA '18\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEA '18\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3208854.3208892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEA '18","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208854.3208892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

气固两相流在气力输送管道中的流型识别对于气力输送系统的优化设计和运行具有重要意义。本文的目的是训练一个人工神经网络(ANN)来识别水平气力输送管道中气固流的流型(悬浮流、层流、浓稀流和沙丘流)。利用环形电极输出信号的Hurst指数和静电传感器阵列输出信号的Hurst指数矩阵分别评价了人工神经网络模型的性能。结果表明,电极传感器阵列对悬浮流、层流和浓稀流的识别率分别提高了5%、9%和13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gas-solid Flow Patterns Identification Based on Artificial Neural Network
Flow patterns identification of the gas--solid flow in pneumatic transport pipelines is significant for the optimized design and operation of the pneumatic conveying system. The objective of this work is to training an Artificial Neural Network(ANN) to identify flow patterns (suspension flow, laminar flow, dense-dilute flow and dune flow) of the gas-solid flow in a horizontal pneumatic conveying pipeline. The performance of the ANN models was evaluated respectively using Hurst exponent of a ring-shaped electrode's output signal and Hurst exponent matrix of an electrostatic sensor array's output signals. Results show a higher recognition rate can be got by using the electrode sensor array, and the improvement is 5% for suspension flow, 9% for laminar flow and 13% for dense-dilute flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pretreatment Optimization of Cholinium Ionic Liquid for Maximizing Sugar Release from Rice Straw Analyzing the Stability of a High-Fill Slope based on Spatial Survey Information The Blocking Factors and Solution Countermeasures in Policy Implementation of New Energy Vehicle Design and Implementation of Automatic Question Answering System in Information Retrieval An Architecture for the Integration of Different Functional and Structural Plant Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1