基于迁移学习的不同云游戏环境QoE估计

Marcos Carvalho, Daniel Soares, D. Macedo
{"title":"基于迁移学习的不同云游戏环境QoE估计","authors":"Marcos Carvalho, Daniel Soares, D. Macedo","doi":"10.1109/NetSoft57336.2023.10175441","DOIUrl":null,"url":null,"abstract":"Cloud Gaming renders game data in the cloud and forwards it to players over the network. While this reduces hardware costs for players, it introduces challenges in network management and delivering a good gaming experience. In this context, network providers are encouraged to implement QoE-aware management systems to guarantee a desired Quality of Experience (QoE), in which Machine Learning (ML) models achieve the state-of-the-art on QoE estimation/monitoring. However, it is hard to create ML models that generalize to different contexts, especially since QoE perception is subjective and varies among games and players. This paper employs transfer learning and fine-tuning to adjust a source model to different target domains. First, we performed a subjective QoE assessment with real users playing on a realistic testbed. Based on this, we derived four datasets, one being the source dataset (to create the source model) and three distinct target datasets. Experiments show that transfer learning can decrease the average MSE error by at least 41.6% compared to the source model performance on the target datasets while decreasing the demand for labeled data by at least 81.1%. Furthermore, the improvement is greater when compared to models trained from scratch for each target dataset.","PeriodicalId":223208,"journal":{"name":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning-Based QoE Estimation For Different Cloud Gaming Contexts\",\"authors\":\"Marcos Carvalho, Daniel Soares, D. Macedo\",\"doi\":\"10.1109/NetSoft57336.2023.10175441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud Gaming renders game data in the cloud and forwards it to players over the network. While this reduces hardware costs for players, it introduces challenges in network management and delivering a good gaming experience. In this context, network providers are encouraged to implement QoE-aware management systems to guarantee a desired Quality of Experience (QoE), in which Machine Learning (ML) models achieve the state-of-the-art on QoE estimation/monitoring. However, it is hard to create ML models that generalize to different contexts, especially since QoE perception is subjective and varies among games and players. This paper employs transfer learning and fine-tuning to adjust a source model to different target domains. First, we performed a subjective QoE assessment with real users playing on a realistic testbed. Based on this, we derived four datasets, one being the source dataset (to create the source model) and three distinct target datasets. Experiments show that transfer learning can decrease the average MSE error by at least 41.6% compared to the source model performance on the target datasets while decreasing the demand for labeled data by at least 81.1%. Furthermore, the improvement is greater when compared to models trained from scratch for each target dataset.\",\"PeriodicalId\":223208,\"journal\":{\"name\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSoft57336.2023.10175441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft57336.2023.10175441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

云游戏在云中呈现游戏数据,并通过网络将其转发给玩家。虽然这降低了玩家的硬件成本,但它在网络管理和提供良好的游戏体验方面带来了挑战。在这种情况下,鼓励网络提供商实施qos感知管理系统,以保证所需的体验质量(QoE),其中机器学习(ML)模型实现最先进的QoE估计/监控。然而,很难创建归纳到不同情境的ML模型,特别是因为QoE感知是主观的,并且因游戏和玩家而异。本文采用迁移学习和微调来调整源模型以适应不同的目标域。首先,我们执行了一个主观的QoE评估,让真实的用户在一个真实的测试平台上玩游戏。在此基础上,我们导出了四个数据集,一个是源数据集(用于创建源模型),三个不同的目标数据集。实验表明,与目标数据集上的源模型性能相比,迁移学习可以将平均MSE误差降低至少41.6%,同时将对标记数据的需求降低至少81.1%。此外,与针对每个目标数据集从头开始训练的模型相比,改进更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer Learning-Based QoE Estimation For Different Cloud Gaming Contexts
Cloud Gaming renders game data in the cloud and forwards it to players over the network. While this reduces hardware costs for players, it introduces challenges in network management and delivering a good gaming experience. In this context, network providers are encouraged to implement QoE-aware management systems to guarantee a desired Quality of Experience (QoE), in which Machine Learning (ML) models achieve the state-of-the-art on QoE estimation/monitoring. However, it is hard to create ML models that generalize to different contexts, especially since QoE perception is subjective and varies among games and players. This paper employs transfer learning and fine-tuning to adjust a source model to different target domains. First, we performed a subjective QoE assessment with real users playing on a realistic testbed. Based on this, we derived four datasets, one being the source dataset (to create the source model) and three distinct target datasets. Experiments show that transfer learning can decrease the average MSE error by at least 41.6% compared to the source model performance on the target datasets while decreasing the demand for labeled data by at least 81.1%. Furthermore, the improvement is greater when compared to models trained from scratch for each target dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Network Management in Multi-Domain 6G Networks based on Graph Neural Networks Showcasing In-Switch Machine Learning Inference Latency-Aware Kubernetes Scheduling for Microservices Orchestration at the Edge DRL-based Service Migration for MEC Cloud-Native 5G and beyond Networks Hierarchical Control Plane Framework for Multi-Domain TSN Orchestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1