智慧城市O2O外卖战略优化

Xiangyu Kong, Guangyu Zou, Heng Qi, Jiafu Tang
{"title":"智慧城市O2O外卖战略优化","authors":"Xiangyu Kong, Guangyu Zou, Heng Qi, Jiafu Tang","doi":"10.1109/ISC255366.2022.9921961","DOIUrl":null,"url":null,"abstract":"This paper studies an Online-to-Offline food delivery problem (OFDP) which can be viewed as a combination of variants of vehicle routing problems (VRPs). First, We define and model the OFDP mathematically. Then, we propose a novel adaptive parameters genetic algorithm with local search (APGALS) to solve the OFDP. The adaptive parameters method dynamically adjusts the crossover and mutation rates to avoid trapping into the local optimum. The local search algorithm can explore the solution space of the problem more efficiently. Static and dynamic experiments are undertaken to evaluate the performance of APGALS. The preliminary experimental results show that the adaptive parameters method and local search algorithm can improve the performance of the algorithm and the proposed APGALS is superior to the pure genetic algorithm, simulated annealing, and tabu search in terms of average fitness value and success rate in static experiment and average waiting time, number of timeout orders, and timeout accumulation in dynamic experiment.","PeriodicalId":277015,"journal":{"name":"2022 IEEE International Smart Cities Conference (ISC2)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of O2O Food Delivery Strategy in Smart Cities\",\"authors\":\"Xiangyu Kong, Guangyu Zou, Heng Qi, Jiafu Tang\",\"doi\":\"10.1109/ISC255366.2022.9921961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies an Online-to-Offline food delivery problem (OFDP) which can be viewed as a combination of variants of vehicle routing problems (VRPs). First, We define and model the OFDP mathematically. Then, we propose a novel adaptive parameters genetic algorithm with local search (APGALS) to solve the OFDP. The adaptive parameters method dynamically adjusts the crossover and mutation rates to avoid trapping into the local optimum. The local search algorithm can explore the solution space of the problem more efficiently. Static and dynamic experiments are undertaken to evaluate the performance of APGALS. The preliminary experimental results show that the adaptive parameters method and local search algorithm can improve the performance of the algorithm and the proposed APGALS is superior to the pure genetic algorithm, simulated annealing, and tabu search in terms of average fitness value and success rate in static experiment and average waiting time, number of timeout orders, and timeout accumulation in dynamic experiment.\",\"PeriodicalId\":277015,\"journal\":{\"name\":\"2022 IEEE International Smart Cities Conference (ISC2)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Smart Cities Conference (ISC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISC255366.2022.9921961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC255366.2022.9921961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个在线到离线的食品配送问题(OFDP),该问题可以看作是车辆路径问题(vrp)变体的组合。首先,我们对OFDP进行了数学定义和建模。在此基础上,提出了一种基于局部搜索的自适应参数遗传算法(APGALS)。自适应参数法动态调整交叉和变异率,避免陷入局部最优。局部搜索算法可以更有效地探索问题的解空间。通过静态和动态实验对该系统的性能进行了评价。初步实验结果表明,自适应参数法和局部搜索算法可以提高算法的性能,所提出的APGALS在静态实验中的平均适应度值和成功率以及在动态实验中的平均等待时间、超时顺序数和超时积累方面都优于纯遗传算法、模拟退火和禁忌搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of O2O Food Delivery Strategy in Smart Cities
This paper studies an Online-to-Offline food delivery problem (OFDP) which can be viewed as a combination of variants of vehicle routing problems (VRPs). First, We define and model the OFDP mathematically. Then, we propose a novel adaptive parameters genetic algorithm with local search (APGALS) to solve the OFDP. The adaptive parameters method dynamically adjusts the crossover and mutation rates to avoid trapping into the local optimum. The local search algorithm can explore the solution space of the problem more efficiently. Static and dynamic experiments are undertaken to evaluate the performance of APGALS. The preliminary experimental results show that the adaptive parameters method and local search algorithm can improve the performance of the algorithm and the proposed APGALS is superior to the pure genetic algorithm, simulated annealing, and tabu search in terms of average fitness value and success rate in static experiment and average waiting time, number of timeout orders, and timeout accumulation in dynamic experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Technology by Older Adults in El Paso, Texas during COVID-19: Purposes, Challenges, and Opportunities Sharing-DNA: a data-driven tool to map the attitude towards sharing services across Europe Development of Hybrid Photovoltaic-based Nanogrids for the Energy Rehabilitation of Public Buildings: The BERLIN Project Advanced Short-Term Net Load Forecasting for Renewable-Based Microgrids Multiple Pedestrian Tracking Framework using Deep Learning-based Multiscale Image Analysis for Stationary-camera Video Surveillance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1