基于比较的分位数摘要的紧密下界

Graham Cormode, P. Veselý
{"title":"基于比较的分位数摘要的紧密下界","authors":"Graham Cormode, P. Veselý","doi":"10.1145/3375395.3387650","DOIUrl":null,"url":null,"abstract":"Quantiles, such as the median or percentiles, provide concise and useful information about the distribution of a collection of items, drawn from a totally ordered universe. We study data structures, called quantile summaries, which keep track of all quantiles of a stream of items, up to an error of at most ε. That is, an ε-approximate quantile summary first processes a stream and then, given any quantile query 0łe φłe 1, returns an item from the stream, which is a φ'-quantile for some φ' = φ +- ε. We focus on comparison-based quantile summaries that can only compare two items and are otherwise completely oblivious of the universe. The best such deterministic quantile summary to date, due to Greenwald and Khanna [6], stores at most O(1/ε ⋅ log ε N) items, where N is the number of items in the stream. We prove that this space bound is optimal by showing a matching lower bound. Our result thus rules out the possibility of constructing a deterministic comparison-based quantile summary in space f(ε)⋅ o(log N), for any function f that does not depend on N. As a corollary, we improve the lower bound for biased quantiles, which provide a stronger, relative-error guarantee of (1+-ε)⋅ φ, and for other related computational tasks.","PeriodicalId":412441,"journal":{"name":"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Tight Lower Bound for Comparison-Based Quantile Summaries\",\"authors\":\"Graham Cormode, P. Veselý\",\"doi\":\"10.1145/3375395.3387650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantiles, such as the median or percentiles, provide concise and useful information about the distribution of a collection of items, drawn from a totally ordered universe. We study data structures, called quantile summaries, which keep track of all quantiles of a stream of items, up to an error of at most ε. That is, an ε-approximate quantile summary first processes a stream and then, given any quantile query 0łe φłe 1, returns an item from the stream, which is a φ'-quantile for some φ' = φ +- ε. We focus on comparison-based quantile summaries that can only compare two items and are otherwise completely oblivious of the universe. The best such deterministic quantile summary to date, due to Greenwald and Khanna [6], stores at most O(1/ε ⋅ log ε N) items, where N is the number of items in the stream. We prove that this space bound is optimal by showing a matching lower bound. Our result thus rules out the possibility of constructing a deterministic comparison-based quantile summary in space f(ε)⋅ o(log N), for any function f that does not depend on N. As a corollary, we improve the lower bound for biased quantiles, which provide a stronger, relative-error guarantee of (1+-ε)⋅ φ, and for other related computational tasks.\",\"PeriodicalId\":412441,\"journal\":{\"name\":\"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375395.3387650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375395.3387650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

分位数,如中位数或百分位数,提供了关于从一个完全有序的宇宙中抽取的一组项目的分布的简洁而有用的信息。我们研究数据结构,称为分位数摘要,它跟踪项目流的所有分位数,误差最多为ε。也就是说,一个ε-近似分位数汇总首先处理一个流,然后,给定任何分位数查询0łe φłe 1,从流中返回一个项目,对于某些φ' = φ +- ε,它是一个φ'-分位数。我们关注的是基于比较的分位数摘要,它只能比较两个项目,否则就完全忽略了整个宇宙。由于Greenwald和Khanna[6],迄今为止最好的这种确定性分位数总结最多存储O(1/ε⋅log ε N)个项目,其中N是流中的项目数。我们通过给出一个匹配的下界来证明这个空间界是最优的。因此,我们的结果排除了在空间f(ε)⋅o(log N)中构建基于确定性比较的分位数总结的可能性,对于任何不依赖于N的函数f,作为推论,我们改进了有偏分位数的下界,从而为(1+-ε)⋅φ提供了更强的相对误差保证,并适用于其他相关的计算任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Tight Lower Bound for Comparison-Based Quantile Summaries
Quantiles, such as the median or percentiles, provide concise and useful information about the distribution of a collection of items, drawn from a totally ordered universe. We study data structures, called quantile summaries, which keep track of all quantiles of a stream of items, up to an error of at most ε. That is, an ε-approximate quantile summary first processes a stream and then, given any quantile query 0łe φłe 1, returns an item from the stream, which is a φ'-quantile for some φ' = φ +- ε. We focus on comparison-based quantile summaries that can only compare two items and are otherwise completely oblivious of the universe. The best such deterministic quantile summary to date, due to Greenwald and Khanna [6], stores at most O(1/ε ⋅ log ε N) items, where N is the number of items in the stream. We prove that this space bound is optimal by showing a matching lower bound. Our result thus rules out the possibility of constructing a deterministic comparison-based quantile summary in space f(ε)⋅ o(log N), for any function f that does not depend on N. As a corollary, we improve the lower bound for biased quantiles, which provide a stronger, relative-error guarantee of (1+-ε)⋅ φ, and for other related computational tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic Databases for All Efficient Indexes for Diverse Top-k Range Queries Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems Parallel Algorithms for Sparse Matrix Multiplication and Join-Aggregate Queries Deciding Robustness for Lower SQL Isolation Levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1