{"title":"核嬗变后固体中的原子运动","authors":"G. Collins","doi":"10.4028/www.scientific.net/DF.27.186","DOIUrl":null,"url":null,"abstract":"Following nuclear decay, a daughter atom in a solid will \"stay in place\" if the recoil energy is less than the threshold for displacement. At high temperature, it may subsequently undergo long-range diffusion or some other kind of atomic motion. In this paper, motion of 111Cd tracer probe atoms is reconsidered following electron-capture decay of 111In in the series of In3R phases (R= rare-earth). The motion produces nuclear relaxation that was measured using the method of perturbed angular correlation. Previous measurements along the entire series of In3R phases appeared to show a crossover between two diffusional regimes. While relaxation for R= Lu-Tb is consistent with a simple vacancy diffusion mechanism, relaxation for R= Nd-La is not. More recent measurements in Pd3R phases demonstrate that the site-preference of the parent In-probe changes along the series and suggests that the same behavior occurs for daughter Cd-probes. The anomalous motion observed for R= Nd-La is attributed to \"lanthanide expansion\" occurring towards La end-member phases. For In3La, the Cd-tracer is found to jump away from its original location on the In-sublattice in an extremely short time, of order 0.5 ns at 1000 K and 1.2 ms at room temperature, a residence time too short to be consistent with defect-mediated diffusion. Several scenarios that can explain the relaxation are presented based on the hypothesis that daughter Cd-probes first jump to neighboring interstitial sites and then are either trapped and immobilized, undergo long-range diffusion, or persist in a localized motion in a cage.","PeriodicalId":311581,"journal":{"name":"Diffusion Foundations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atom Motion in Solids Following Nuclear Transmutation\",\"authors\":\"G. Collins\",\"doi\":\"10.4028/www.scientific.net/DF.27.186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following nuclear decay, a daughter atom in a solid will \\\"stay in place\\\" if the recoil energy is less than the threshold for displacement. At high temperature, it may subsequently undergo long-range diffusion or some other kind of atomic motion. In this paper, motion of 111Cd tracer probe atoms is reconsidered following electron-capture decay of 111In in the series of In3R phases (R= rare-earth). The motion produces nuclear relaxation that was measured using the method of perturbed angular correlation. Previous measurements along the entire series of In3R phases appeared to show a crossover between two diffusional regimes. While relaxation for R= Lu-Tb is consistent with a simple vacancy diffusion mechanism, relaxation for R= Nd-La is not. More recent measurements in Pd3R phases demonstrate that the site-preference of the parent In-probe changes along the series and suggests that the same behavior occurs for daughter Cd-probes. The anomalous motion observed for R= Nd-La is attributed to \\\"lanthanide expansion\\\" occurring towards La end-member phases. For In3La, the Cd-tracer is found to jump away from its original location on the In-sublattice in an extremely short time, of order 0.5 ns at 1000 K and 1.2 ms at room temperature, a residence time too short to be consistent with defect-mediated diffusion. Several scenarios that can explain the relaxation are presented based on the hypothesis that daughter Cd-probes first jump to neighboring interstitial sites and then are either trapped and immobilized, undergo long-range diffusion, or persist in a localized motion in a cage.\",\"PeriodicalId\":311581,\"journal\":{\"name\":\"Diffusion Foundations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diffusion Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/DF.27.186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffusion Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/DF.27.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Atom Motion in Solids Following Nuclear Transmutation
Following nuclear decay, a daughter atom in a solid will "stay in place" if the recoil energy is less than the threshold for displacement. At high temperature, it may subsequently undergo long-range diffusion or some other kind of atomic motion. In this paper, motion of 111Cd tracer probe atoms is reconsidered following electron-capture decay of 111In in the series of In3R phases (R= rare-earth). The motion produces nuclear relaxation that was measured using the method of perturbed angular correlation. Previous measurements along the entire series of In3R phases appeared to show a crossover between two diffusional regimes. While relaxation for R= Lu-Tb is consistent with a simple vacancy diffusion mechanism, relaxation for R= Nd-La is not. More recent measurements in Pd3R phases demonstrate that the site-preference of the parent In-probe changes along the series and suggests that the same behavior occurs for daughter Cd-probes. The anomalous motion observed for R= Nd-La is attributed to "lanthanide expansion" occurring towards La end-member phases. For In3La, the Cd-tracer is found to jump away from its original location on the In-sublattice in an extremely short time, of order 0.5 ns at 1000 K and 1.2 ms at room temperature, a residence time too short to be consistent with defect-mediated diffusion. Several scenarios that can explain the relaxation are presented based on the hypothesis that daughter Cd-probes first jump to neighboring interstitial sites and then are either trapped and immobilized, undergo long-range diffusion, or persist in a localized motion in a cage.