彩色文档的文本提取——三维和四维聚类方法

T. Perroud, K. Sobottka, H. Bunke, L. Hall
{"title":"彩色文档的文本提取——三维和四维聚类方法","authors":"T. Perroud, K. Sobottka, H. Bunke, L. Hall","doi":"10.1109/ICDAR.2001.953923","DOIUrl":null,"url":null,"abstract":"Colored paper documents often contain important text information. For automating the retrieval process, identification of text elements is essential. In order to reduce the number of colors in a scanned document, color clustering is usually done first. In this article two histogram-based color clustering algorithms are investigated. The first is based on the RGB color space exclusively, while the second takes spatial information into account, in addition to the colors. Experimental results have shown that the use of spatial information in the clustering algorithm has a positive impact. Thus the automatic retrieval of text information can be improved. The proposed methods for clustering are not restricted to document images. They can also be used for processing Web or video images, for example.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"01 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Text extraction from color documents-clustering approaches in three and four dimensions\",\"authors\":\"T. Perroud, K. Sobottka, H. Bunke, L. Hall\",\"doi\":\"10.1109/ICDAR.2001.953923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colored paper documents often contain important text information. For automating the retrieval process, identification of text elements is essential. In order to reduce the number of colors in a scanned document, color clustering is usually done first. In this article two histogram-based color clustering algorithms are investigated. The first is based on the RGB color space exclusively, while the second takes spatial information into account, in addition to the colors. Experimental results have shown that the use of spatial information in the clustering algorithm has a positive impact. Thus the automatic retrieval of text information can be improved. The proposed methods for clustering are not restricted to document images. They can also be used for processing Web or video images, for example.\",\"PeriodicalId\":277816,\"journal\":{\"name\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"volume\":\"01 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2001.953923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

彩色纸文档通常包含重要的文本信息。为了使检索过程自动化,文本元素的识别是必不可少的。为了减少扫描文档中的颜色数量,通常首先进行颜色聚类。本文研究了两种基于直方图的颜色聚类算法。第一种方法是完全基于RGB色彩空间,而第二种方法除了色彩之外还考虑了空间信息。实验结果表明,在聚类算法中使用空间信息具有积极的影响。从而提高文本信息的自动检索能力。本文提出的聚类方法并不局限于文档图像。例如,它们还可以用于处理网络或视频图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Text extraction from color documents-clustering approaches in three and four dimensions
Colored paper documents often contain important text information. For automating the retrieval process, identification of text elements is essential. In order to reduce the number of colors in a scanned document, color clustering is usually done first. In this article two histogram-based color clustering algorithms are investigated. The first is based on the RGB color space exclusively, while the second takes spatial information into account, in addition to the colors. Experimental results have shown that the use of spatial information in the clustering algorithm has a positive impact. Thus the automatic retrieval of text information can be improved. The proposed methods for clustering are not restricted to document images. They can also be used for processing Web or video images, for example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-world evaluation of a generic document recognition method applied to a military form of the 19th century A feedback-based approach for segmenting handwritten legal amounts on bank cheques Accuracy improvement of handwritten numeral recognition by mirror image learning Synthetic data for Arabic OCR system development On the influence of vocabulary size and language models in unconstrained handwritten text recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1