Prashant Kumar, Bisheswar Choudhury, Amandeep Singh, J. Ramkumar, Deepu Philip, A. K. Ghosh
{"title":"基于人工神经网络的动力伞无人机油门与伺服控制建模与预测","authors":"Prashant Kumar, Bisheswar Choudhury, Amandeep Singh, J. Ramkumar, Deepu Philip, A. K. Ghosh","doi":"10.1139/dsa-2022-0040","DOIUrl":null,"url":null,"abstract":"This study proposes a framework for developing a realistic model for throttle and servo control algorithms for a Powered Parafoil Unmanned Aerial Vehicle (PPUAV) using Artificial Neural Networks (ANN). Two servo motors on an L-shaped platform, controls and steers the PPUAV. Six degrees of freedom (DOF) mathematical model of a dynamic parafoil system is built to test the technique's efficacy using a simulation in which disturbances mimic actual flights. A guiding law is then established, including the cross-track error and the line of sight approach. Furthermore, a path-following controller is constructed using the proportional-integral-derivative (PID), and a simulation platform was created to evaluate numerical data illustrating the route's validity following the technique. PPUAV was developed, built, and instrumented to collect real-time flight data to test the controller. These dynamic characteristics were sent into the ANN for training. A diverging-converging design was identified to obtain the best consistency between predicted and observed Throttle and servo control values. For a comparable flight route, the control signal of the simulated model is compared to that of the actual and ANN predicted models. The comparative findings show that the ANN-predicted and actual control inputs were almost identical, with an 80-99 % match. However, the simulated response showed deviation from the actual control input, with an accuracy of 50-80%.","PeriodicalId":202289,"journal":{"name":"Drone Systems and Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Prediction of Powered Parafoil Unmanned Aerial Vehicle Throttle and Servo Controls through Artificial Neural Networks\",\"authors\":\"Prashant Kumar, Bisheswar Choudhury, Amandeep Singh, J. Ramkumar, Deepu Philip, A. K. Ghosh\",\"doi\":\"10.1139/dsa-2022-0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a framework for developing a realistic model for throttle and servo control algorithms for a Powered Parafoil Unmanned Aerial Vehicle (PPUAV) using Artificial Neural Networks (ANN). Two servo motors on an L-shaped platform, controls and steers the PPUAV. Six degrees of freedom (DOF) mathematical model of a dynamic parafoil system is built to test the technique's efficacy using a simulation in which disturbances mimic actual flights. A guiding law is then established, including the cross-track error and the line of sight approach. Furthermore, a path-following controller is constructed using the proportional-integral-derivative (PID), and a simulation platform was created to evaluate numerical data illustrating the route's validity following the technique. PPUAV was developed, built, and instrumented to collect real-time flight data to test the controller. These dynamic characteristics were sent into the ANN for training. A diverging-converging design was identified to obtain the best consistency between predicted and observed Throttle and servo control values. For a comparable flight route, the control signal of the simulated model is compared to that of the actual and ANN predicted models. The comparative findings show that the ANN-predicted and actual control inputs were almost identical, with an 80-99 % match. However, the simulated response showed deviation from the actual control input, with an accuracy of 50-80%.\",\"PeriodicalId\":202289,\"journal\":{\"name\":\"Drone Systems and Applications\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drone Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/dsa-2022-0040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drone Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/dsa-2022-0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and Prediction of Powered Parafoil Unmanned Aerial Vehicle Throttle and Servo Controls through Artificial Neural Networks
This study proposes a framework for developing a realistic model for throttle and servo control algorithms for a Powered Parafoil Unmanned Aerial Vehicle (PPUAV) using Artificial Neural Networks (ANN). Two servo motors on an L-shaped platform, controls and steers the PPUAV. Six degrees of freedom (DOF) mathematical model of a dynamic parafoil system is built to test the technique's efficacy using a simulation in which disturbances mimic actual flights. A guiding law is then established, including the cross-track error and the line of sight approach. Furthermore, a path-following controller is constructed using the proportional-integral-derivative (PID), and a simulation platform was created to evaluate numerical data illustrating the route's validity following the technique. PPUAV was developed, built, and instrumented to collect real-time flight data to test the controller. These dynamic characteristics were sent into the ANN for training. A diverging-converging design was identified to obtain the best consistency between predicted and observed Throttle and servo control values. For a comparable flight route, the control signal of the simulated model is compared to that of the actual and ANN predicted models. The comparative findings show that the ANN-predicted and actual control inputs were almost identical, with an 80-99 % match. However, the simulated response showed deviation from the actual control input, with an accuracy of 50-80%.