基于脑电信号处理的抑郁程度预测

H. Mallikarjun, H. N. Suresh
{"title":"基于脑电信号处理的抑郁程度预测","authors":"H. Mallikarjun, H. N. Suresh","doi":"10.1109/IC3I.2014.7019674","DOIUrl":null,"url":null,"abstract":"Depression is one of the most common mental disorders that at its worst can lead to suicide. Diagnosing depression in the early curable stage is very important. It may also lead to various disorders like sleep disorders and alcoholism. Here in this project the Electroencephalogram Gram (EEG) signals are obtained from publicly available database are processed in MATLAB. This can be useful in classifying subjects with the disorders using classifier tools present in it. For this aim, the features are extracted from frequency bands (alpha, delta and theta).","PeriodicalId":430848,"journal":{"name":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Depression level prediction using EEG signal processing\",\"authors\":\"H. Mallikarjun, H. N. Suresh\",\"doi\":\"10.1109/IC3I.2014.7019674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depression is one of the most common mental disorders that at its worst can lead to suicide. Diagnosing depression in the early curable stage is very important. It may also lead to various disorders like sleep disorders and alcoholism. Here in this project the Electroencephalogram Gram (EEG) signals are obtained from publicly available database are processed in MATLAB. This can be useful in classifying subjects with the disorders using classifier tools present in it. For this aim, the features are extracted from frequency bands (alpha, delta and theta).\",\"PeriodicalId\":430848,\"journal\":{\"name\":\"2014 International Conference on Contemporary Computing and Informatics (IC3I)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Contemporary Computing and Informatics (IC3I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3I.2014.7019674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2014.7019674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

抑郁症是最常见的精神障碍之一,最严重时可能导致自杀。在早期可治愈阶段诊断抑郁症是非常重要的。它还可能导致各种疾病,如睡眠障碍和酗酒。在这个项目中,脑电图(EEG)信号是从公开的数据库中获得的,并在MATLAB中进行处理。这对于使用分类工具对疾病进行分类是有用的。为此,从频带(alpha, delta和theta)中提取特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Depression level prediction using EEG signal processing
Depression is one of the most common mental disorders that at its worst can lead to suicide. Diagnosing depression in the early curable stage is very important. It may also lead to various disorders like sleep disorders and alcoholism. Here in this project the Electroencephalogram Gram (EEG) signals are obtained from publicly available database are processed in MATLAB. This can be useful in classifying subjects with the disorders using classifier tools present in it. For this aim, the features are extracted from frequency bands (alpha, delta and theta).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart home and smart city solutions enabled by 5G, IoT, AAI and CoT services Video retrieval: An accurate approach based on Kirsch descriptor Microarray data classification using Fuzzy K-Nearest Neighbor Assessment of data quality in Web sites: towards a model A novel cross layer wireless mesh network protocol for distributed generation in electrical networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1