一种轻巧高效的三维形状零件分割注意模型

W. Shi, Zhongyi Li
{"title":"一种轻巧高效的三维形状零件分割注意模型","authors":"W. Shi, Zhongyi Li","doi":"10.1145/3569966.3570055","DOIUrl":null,"url":null,"abstract":"Part segmentation is one of the important tasks in 3D shape analysis. Prior works mostly rely on complex local modeling to learn features directly from raw mesh or point cloud. We proposed a simple, fast and robust approach for 3D shape part segmentation without sophisticated local geometric modeling and ingenious networks. Our main idea is to learn more discriminative features from different geometric descriptors by sparse convolution and attention mechanism. Specifically, an effective shape representation block, consists of a features embedding module, two attention module. The coordinates are fed into the features embedding module to produce embedding vectors. The attention head to learn the intrinsic relations between different descriptors and produce more informative feature maps. In the lower branch, We use some geometric descriptors as local features. And a classification head predicts the corresponding label. Conditional Random Field (CRF) is applied to optimize the segmentation of the network. The experiment results on Princeton Shape Benchmark(PSB) demonstrate that our architecture outperforms different methods, with higher accuracy, lower complexity and faster speed.","PeriodicalId":145580,"journal":{"name":"Proceedings of the 5th International Conference on Computer Science and Software Engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A light and efficient attention model for 3D shape part-segmentation\",\"authors\":\"W. Shi, Zhongyi Li\",\"doi\":\"10.1145/3569966.3570055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Part segmentation is one of the important tasks in 3D shape analysis. Prior works mostly rely on complex local modeling to learn features directly from raw mesh or point cloud. We proposed a simple, fast and robust approach for 3D shape part segmentation without sophisticated local geometric modeling and ingenious networks. Our main idea is to learn more discriminative features from different geometric descriptors by sparse convolution and attention mechanism. Specifically, an effective shape representation block, consists of a features embedding module, two attention module. The coordinates are fed into the features embedding module to produce embedding vectors. The attention head to learn the intrinsic relations between different descriptors and produce more informative feature maps. In the lower branch, We use some geometric descriptors as local features. And a classification head predicts the corresponding label. Conditional Random Field (CRF) is applied to optimize the segmentation of the network. The experiment results on Princeton Shape Benchmark(PSB) demonstrate that our architecture outperforms different methods, with higher accuracy, lower complexity and faster speed.\",\"PeriodicalId\":145580,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Computer Science and Software Engineering\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Computer Science and Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3569966.3570055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Computer Science and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569966.3570055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

零件分割是三维形状分析的重要内容之一。以前的工作大多依赖于复杂的局部建模,直接从原始网格或点云中学习特征。提出了一种简单、快速、鲁棒的三维形状零件分割方法,无需复杂的局部几何建模和巧妙的网络。我们的主要思想是通过稀疏卷积和注意机制从不同的几何描述符中学习更多的判别特征。具体来说,一个有效的形状表示块,由一个特征嵌入模块、两个关注模块组成。将坐标输入特征嵌入模块,生成嵌入向量。注意力集中在学习不同描述符之间的内在关系,从而产生更多信息的特征图。在下分支中,我们使用一些几何描述符作为局部特征。分类头预测相应的标签。采用条件随机场(CRF)对网络进行优化分割。在普林斯顿形状基准测试(PSB)上的实验结果表明,我们的架构具有更高的精度、更低的复杂度和更快的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A light and efficient attention model for 3D shape part-segmentation
Part segmentation is one of the important tasks in 3D shape analysis. Prior works mostly rely on complex local modeling to learn features directly from raw mesh or point cloud. We proposed a simple, fast and robust approach for 3D shape part segmentation without sophisticated local geometric modeling and ingenious networks. Our main idea is to learn more discriminative features from different geometric descriptors by sparse convolution and attention mechanism. Specifically, an effective shape representation block, consists of a features embedding module, two attention module. The coordinates are fed into the features embedding module to produce embedding vectors. The attention head to learn the intrinsic relations between different descriptors and produce more informative feature maps. In the lower branch, We use some geometric descriptors as local features. And a classification head predicts the corresponding label. Conditional Random Field (CRF) is applied to optimize the segmentation of the network. The experiment results on Princeton Shape Benchmark(PSB) demonstrate that our architecture outperforms different methods, with higher accuracy, lower complexity and faster speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accurate and Time-saving Deepfake Detection in Multi-face Scenarios Using Combined Features The Exponential Dynamic Analysis of Network Attention Based on Big Data Research on Data Governance and Data Migration based on Oracle Database Appliance in campus Research on Conformance Engineering process of Airborne Software quality Assurance in Civil Aviation Extending Take-Grant Model for More Flexible Privilege Propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1