SBST 2021工具竞赛中的狂热者

Ezequiel Castellano, A. Cetinkaya, Cédric Ho Thanh, Stefan Klikovits, Xiaoyi Zhang, Paolo Arcaini
{"title":"SBST 2021工具竞赛中的狂热者","authors":"Ezequiel Castellano, A. Cetinkaya, Cédric Ho Thanh, Stefan Klikovits, Xiaoyi Zhang, Paolo Arcaini","doi":"10.1109/SBST52555.2021.00016","DOIUrl":null,"url":null,"abstract":"Frenetic is a genetic approach that leverages a curvature-based road representation. Given an autonomous driving agent, the goal of Frenetic is to generate roads where the agent fails to stay within its lane. In other words, Frenetic tries to minimize the “out of bound distance”, which is the distance between the car and either edge of the lane if the car is within the lane, and proceeds to negative values once the car drives off. This work resembles classic aspects of genetic algorithms such as mutations and crossover, but introduces some nuances aiming at improving diversity of the generated roads.","PeriodicalId":199085,"journal":{"name":"2021 IEEE/ACM 14th International Workshop on Search-Based Software Testing (SBST)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Frenetic at the SBST 2021 Tool Competition\",\"authors\":\"Ezequiel Castellano, A. Cetinkaya, Cédric Ho Thanh, Stefan Klikovits, Xiaoyi Zhang, Paolo Arcaini\",\"doi\":\"10.1109/SBST52555.2021.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frenetic is a genetic approach that leverages a curvature-based road representation. Given an autonomous driving agent, the goal of Frenetic is to generate roads where the agent fails to stay within its lane. In other words, Frenetic tries to minimize the “out of bound distance”, which is the distance between the car and either edge of the lane if the car is within the lane, and proceeds to negative values once the car drives off. This work resembles classic aspects of genetic algorithms such as mutations and crossover, but introduces some nuances aiming at improving diversity of the generated roads.\",\"PeriodicalId\":199085,\"journal\":{\"name\":\"2021 IEEE/ACM 14th International Workshop on Search-Based Software Testing (SBST)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM 14th International Workshop on Search-Based Software Testing (SBST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBST52555.2021.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 14th International Workshop on Search-Based Software Testing (SBST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBST52555.2021.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

狂热是一种利用基于曲率的道路表示的遗传方法。给定一个自动驾驶代理,Frenetic的目标是生成代理无法保持在其车道内的道路。换句话说,Frenetic试图最小化“超限距离”,即如果汽车在车道内,汽车与车道两侧之间的距离,一旦汽车驶离车道,则将其变为负值。这项工作类似于遗传算法的经典方面,如突变和交叉,但引入了一些细微的差别,旨在提高生成道路的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frenetic at the SBST 2021 Tool Competition
Frenetic is a genetic approach that leverages a curvature-based road representation. Given an autonomous driving agent, the goal of Frenetic is to generate roads where the agent fails to stay within its lane. In other words, Frenetic tries to minimize the “out of bound distance”, which is the distance between the car and either edge of the lane if the car is within the lane, and proceeds to negative values once the car drives off. This work resembles classic aspects of genetic algorithms such as mutations and crossover, but introduces some nuances aiming at improving diversity of the generated roads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evosuite at the SBST 2021 Tool Competition Augmenting Search-based Techniques with Static Synthesis-based Input Generation Beacon: Automated Test Generation for Stack-Trace Reproduction using Genetic Algorithms Frenetic at the SBST 2021 Tool Competition Deeper at the SBST 2021 Tool Competition: ADAS Testing Using Multi-Objective Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1