Jad Oueis, Razvan Stanica, F. Valois, V. Conan, D. Lavaux
{"title":"核心网功能在移动网络中的布局","authors":"Jad Oueis, Razvan Stanica, F. Valois, V. Conan, D. Lavaux","doi":"10.1109/PIMRC.2017.8292222","DOIUrl":null,"url":null,"abstract":"An isolated base station is a base station having no connection to a traditional core network. To provide services to users, an isolated base station is colocated with an entity providing the same functionalities as the traditional core network, referred to as Local EPC. In order to cover wider areas, several base stations are interconnected, forming a network that should be served by a single Local EPC. In this work, we tackle the Local EPC placement problem in the network, to determine with which of the base stations the Local EPC must be co-located. We propose a novel centrality metric, flow centrality, which measures the capacity of a node to receive the total amount of flows in the network. We show that co-locating the Local EPC with the base station having the maximum flow centrality maximizes the total amount of traffic the Local EPC can receive from all base stations, under certain capacity and load distribution constraints. We compare the flow centrality to other state of the art centrality metrics, and emphasize its advantages.","PeriodicalId":397107,"journal":{"name":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Core network function placement in mobile networks\",\"authors\":\"Jad Oueis, Razvan Stanica, F. Valois, V. Conan, D. Lavaux\",\"doi\":\"10.1109/PIMRC.2017.8292222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An isolated base station is a base station having no connection to a traditional core network. To provide services to users, an isolated base station is colocated with an entity providing the same functionalities as the traditional core network, referred to as Local EPC. In order to cover wider areas, several base stations are interconnected, forming a network that should be served by a single Local EPC. In this work, we tackle the Local EPC placement problem in the network, to determine with which of the base stations the Local EPC must be co-located. We propose a novel centrality metric, flow centrality, which measures the capacity of a node to receive the total amount of flows in the network. We show that co-locating the Local EPC with the base station having the maximum flow centrality maximizes the total amount of traffic the Local EPC can receive from all base stations, under certain capacity and load distribution constraints. We compare the flow centrality to other state of the art centrality metrics, and emphasize its advantages.\",\"PeriodicalId\":397107,\"journal\":{\"name\":\"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.2017.8292222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2017.8292222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Core network function placement in mobile networks
An isolated base station is a base station having no connection to a traditional core network. To provide services to users, an isolated base station is colocated with an entity providing the same functionalities as the traditional core network, referred to as Local EPC. In order to cover wider areas, several base stations are interconnected, forming a network that should be served by a single Local EPC. In this work, we tackle the Local EPC placement problem in the network, to determine with which of the base stations the Local EPC must be co-located. We propose a novel centrality metric, flow centrality, which measures the capacity of a node to receive the total amount of flows in the network. We show that co-locating the Local EPC with the base station having the maximum flow centrality maximizes the total amount of traffic the Local EPC can receive from all base stations, under certain capacity and load distribution constraints. We compare the flow centrality to other state of the art centrality metrics, and emphasize its advantages.