用神经网络估计500kv超高压双回输电线路雷电过电压分析中停电率影响的概率参数

C. Jaipradidtham
{"title":"用神经网络估计500kv超高压双回输电线路雷电过电压分析中停电率影响的概率参数","authors":"C. Jaipradidtham","doi":"10.1109/IPEC.2005.207018","DOIUrl":null,"url":null,"abstract":"This paper presents the probability parameter estimating due to outage rate effects for lightning overvoltage analysis on 500 kV EHV double circuit transmission lines of type DL3deg and DT20deg by using neural networks. This research begins for parameter determining the critical flashover voltage: (CFO) required for a given lightning surge performance level is given. If the surge voltage varies along the line, the insulation of system from fault effect. This fault line will have a number of stroke on overhead ground wire. The maximum voltage from flashover effects in the lines. The Gaussian frequency of occurrence of surge voltage, the extreme value distribution, the critical stroke current. An artificial neural network can shorten the probability of flashover at tower and the outage rate. Estimation of the parameter using program give the results which are reliability of 500 kV double circuit transmission lines designs efficiently","PeriodicalId":164802,"journal":{"name":"2005 International Power Engineering Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Probability parameter estimation of outage rate effects for lightning overvoltage analysis on 500 kV EHV double circuit transmission lines using neural networks\",\"authors\":\"C. Jaipradidtham\",\"doi\":\"10.1109/IPEC.2005.207018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the probability parameter estimating due to outage rate effects for lightning overvoltage analysis on 500 kV EHV double circuit transmission lines of type DL3deg and DT20deg by using neural networks. This research begins for parameter determining the critical flashover voltage: (CFO) required for a given lightning surge performance level is given. If the surge voltage varies along the line, the insulation of system from fault effect. This fault line will have a number of stroke on overhead ground wire. The maximum voltage from flashover effects in the lines. The Gaussian frequency of occurrence of surge voltage, the extreme value distribution, the critical stroke current. An artificial neural network can shorten the probability of flashover at tower and the outage rate. Estimation of the parameter using program give the results which are reliability of 500 kV double circuit transmission lines designs efficiently\",\"PeriodicalId\":164802,\"journal\":{\"name\":\"2005 International Power Engineering Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Power Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPEC.2005.207018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Power Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPEC.2005.207018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了用神经网络估计500kv超高压双回线路DL3deg和DT20deg雷电过电压分析中停电率影响的概率参数。本研究从确定临界闪络电压参数开始,给出了给定雷电浪涌性能水平所需的临界闪络电压。如果浪涌电压沿线路变化,则会影响系统的绝缘不受故障影响。这条故障线路在架空地线上会有若干次行程。线路中闪络效应产生的最大电压。浪涌电压发生的高斯频率、极值分布、临界行程电流。人工神经网络可以缩短塔闪络的发生概率和断网率。用程序对这些参数进行了估计,有效地提高了500kv双回输电线路设计的可靠性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probability parameter estimation of outage rate effects for lightning overvoltage analysis on 500 kV EHV double circuit transmission lines using neural networks
This paper presents the probability parameter estimating due to outage rate effects for lightning overvoltage analysis on 500 kV EHV double circuit transmission lines of type DL3deg and DT20deg by using neural networks. This research begins for parameter determining the critical flashover voltage: (CFO) required for a given lightning surge performance level is given. If the surge voltage varies along the line, the insulation of system from fault effect. This fault line will have a number of stroke on overhead ground wire. The maximum voltage from flashover effects in the lines. The Gaussian frequency of occurrence of surge voltage, the extreme value distribution, the critical stroke current. An artificial neural network can shorten the probability of flashover at tower and the outage rate. Estimation of the parameter using program give the results which are reliability of 500 kV double circuit transmission lines designs efficiently
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The application of association rule mining in power system restoration The influence of model mismatch to power system calculation, part II: on the stability calculation Optimal participation of a microgrid to the energy market with an intelligent EMS An account of a modified lightning protection system for power stations An improved usage allocation method for deregulated transmission systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1