信息物理系统中基于综合的特征交互解析

B. Gafford, Tobias Dürschmid, Gabriel A. Moreno, Eunsuk Kang
{"title":"信息物理系统中基于综合的特征交互解析","authors":"B. Gafford, Tobias Dürschmid, Gabriel A. Moreno, Eunsuk Kang","doi":"10.1145/3324884.3416630","DOIUrl":null,"url":null,"abstract":"The feature interaction problem arises when two or more independent features interact with each other in an undesirable manner. Feature interactions remain a challenging and important problem in emerging domains of cyber-physical systems (CPS), such as intelligent vehicles, unmanned aerial vehicles (UAVs) and the Internet of Things (IoT), where the outcome of an unexpected interaction may result in a safety failure. Existing approaches to resolving feature interactions rely on priority lists or fixed strategies, but may not be effective in scenarios where none of the competing feature actions are satisfactory with respect to system requirements. This paper proposes a novel synthesis-based approach to resolution, where a conflict among features is resolved by synthesizing an action that best satisfies the specification of desirable system behaviors in the given environmental context. Unlike existing resolution methods, our approach is capable of producing a desirable system outcome even when none of the conflicting actions are satisfactory. The effectiveness of the proposed approach is demonstrated using a case study involving interactions among safety-critical features in an autonomous drone.","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis-Based Resolution of Feature Interactions in Cyber-Physical Systems\",\"authors\":\"B. Gafford, Tobias Dürschmid, Gabriel A. Moreno, Eunsuk Kang\",\"doi\":\"10.1145/3324884.3416630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The feature interaction problem arises when two or more independent features interact with each other in an undesirable manner. Feature interactions remain a challenging and important problem in emerging domains of cyber-physical systems (CPS), such as intelligent vehicles, unmanned aerial vehicles (UAVs) and the Internet of Things (IoT), where the outcome of an unexpected interaction may result in a safety failure. Existing approaches to resolving feature interactions rely on priority lists or fixed strategies, but may not be effective in scenarios where none of the competing feature actions are satisfactory with respect to system requirements. This paper proposes a novel synthesis-based approach to resolution, where a conflict among features is resolved by synthesizing an action that best satisfies the specification of desirable system behaviors in the given environmental context. Unlike existing resolution methods, our approach is capable of producing a desirable system outcome even when none of the conflicting actions are satisfactory. The effectiveness of the proposed approach is demonstrated using a case study involving interactions among safety-critical features in an autonomous drone.\",\"PeriodicalId\":106337,\"journal\":{\"name\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3324884.3416630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3416630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当两个或多个独立的特征以不希望的方式相互作用时,就会出现特征交互问题。在智能车辆、无人机(uav)和物联网(IoT)等网络物理系统(CPS)的新兴领域,特征交互仍然是一个具有挑战性和重要的问题,在这些领域,意外交互的结果可能导致安全故障。现有的解决功能交互的方法依赖于优先级列表或固定策略,但是在没有一个相互竞争的功能操作满足系统需求的情况下可能不有效。本文提出了一种新的基于综合的解决方法,其中通过综合最能满足给定环境上下文中理想系统行为规范的操作来解决特征之间的冲突。与现有的解决方法不同,我们的方法能够产生理想的系统结果,即使没有一个冲突的动作是令人满意的。通过一个涉及自主无人机安全关键特征之间相互作用的案例研究,证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis-Based Resolution of Feature Interactions in Cyber-Physical Systems
The feature interaction problem arises when two or more independent features interact with each other in an undesirable manner. Feature interactions remain a challenging and important problem in emerging domains of cyber-physical systems (CPS), such as intelligent vehicles, unmanned aerial vehicles (UAVs) and the Internet of Things (IoT), where the outcome of an unexpected interaction may result in a safety failure. Existing approaches to resolving feature interactions rely on priority lists or fixed strategies, but may not be effective in scenarios where none of the competing feature actions are satisfactory with respect to system requirements. This paper proposes a novel synthesis-based approach to resolution, where a conflict among features is resolved by synthesizing an action that best satisfies the specification of desirable system behaviors in the given environmental context. Unlike existing resolution methods, our approach is capable of producing a desirable system outcome even when none of the conflicting actions are satisfactory. The effectiveness of the proposed approach is demonstrated using a case study involving interactions among safety-critical features in an autonomous drone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Generating Thread-Safe Classes Automatically Anti-patterns for Java Automated Program Repair Tools Automating Just-In-Time Comment Updating Synthesizing Smart Solving Strategy for Symbolic Execution Identifying and Describing Information Seeking Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1