多响应鲁棒参数设计策略

S. Kuhnt, M. Erdbrügge
{"title":"多响应鲁棒参数设计策略","authors":"S. Kuhnt, M. Erdbrügge","doi":"10.1191/1471082X04st078oa","DOIUrl":null,"url":null,"abstract":"In this article, we provide a strategy for the simultaneous optimization of multiple responses. Cases are covered where a set of response variables has finite target values and depends on easy to control as well as on hard to control variables. Our approach is based on loss functions, without the need for a predefined cost matrix. For each element of a sequence of possible weights assigned to the individual responses, settings of the easy to control parameters are determined, which minimize the estimated mean of a multivariate loss function. The estimation is based on statistical models, which depend only on the easy to control variables. The loss function itself takes the value zero, if all responses are on target with zero variances. In each case, the derived parameter settings are connected to a specific compromise of the responses, which is graphically displayed to the engineer by so called joint optimization plots. The expert can thereby gain valuable insight into the production process and then decide on the most sensible parameter setting. The proposed strategy is illustrated with a data set from the literature and new data from an up to date application.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A strategy of robust parameter design for multiple responses\",\"authors\":\"S. Kuhnt, M. Erdbrügge\",\"doi\":\"10.1191/1471082X04st078oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we provide a strategy for the simultaneous optimization of multiple responses. Cases are covered where a set of response variables has finite target values and depends on easy to control as well as on hard to control variables. Our approach is based on loss functions, without the need for a predefined cost matrix. For each element of a sequence of possible weights assigned to the individual responses, settings of the easy to control parameters are determined, which minimize the estimated mean of a multivariate loss function. The estimation is based on statistical models, which depend only on the easy to control variables. The loss function itself takes the value zero, if all responses are on target with zero variances. In each case, the derived parameter settings are connected to a specific compromise of the responses, which is graphically displayed to the engineer by so called joint optimization plots. The expert can thereby gain valuable insight into the production process and then decide on the most sensible parameter setting. The proposed strategy is illustrated with a data set from the literature and new data from an up to date application.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X04st078oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X04st078oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们提供了一种同时优化多个响应的策略。在一些情况下,一组响应变量具有有限的目标值,并且取决于易于控制和难以控制的变量。我们的方法是基于损失函数,不需要预定义的成本矩阵。对于分配给单个响应的可能权重序列的每个元素,确定易于控制的参数的设置,使多变量损失函数的估计平均值最小化。估计是基于统计模型,它只依赖于容易控制的变量。如果所有响应都在目标上且方差为零,则损失函数本身取值为零。在每种情况下,导出的参数设置都与响应的特定折衷相关联,通过所谓的联合优化图以图形方式显示给工程师。因此,专家可以获得对生产过程的宝贵见解,然后决定最合理的参数设置。本文用文献中的数据集和最新应用中的新数据来说明所提出的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A strategy of robust parameter design for multiple responses
In this article, we provide a strategy for the simultaneous optimization of multiple responses. Cases are covered where a set of response variables has finite target values and depends on easy to control as well as on hard to control variables. Our approach is based on loss functions, without the need for a predefined cost matrix. For each element of a sequence of possible weights assigned to the individual responses, settings of the easy to control parameters are determined, which minimize the estimated mean of a multivariate loss function. The estimation is based on statistical models, which depend only on the easy to control variables. The loss function itself takes the value zero, if all responses are on target with zero variances. In each case, the derived parameter settings are connected to a specific compromise of the responses, which is graphically displayed to the engineer by so called joint optimization plots. The expert can thereby gain valuable insight into the production process and then decide on the most sensible parameter setting. The proposed strategy is illustrated with a data set from the literature and new data from an up to date application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1