{"title":"非整倍体:单细胞RNA测序分析的机会","authors":"J. Delaney","doi":"10.32604/biocell.2021.017296","DOIUrl":null,"url":null,"abstract":"Single-cell sequencing data has transformed the understanding of biological heterogeneity. While many flavors of single-cell sequencing have been developed, single-cell RNA sequencing (scRNA-seq) is currently the most prolific form in published literature. Bioinformatic analysis of differential biology within the population of cells studied relies on inferences and grouping of cells due to the spotty nature of data within individual cell scRNA-seq gene counts. One biologically relevant variable is readily inferred from scRNA-seq gene count tables regardless of individual gene representation within single cells: aneuploidy. Since hundreds of genes are present on chromosome arms, high-quality inferences of aneuploidy can be made from scRNA-seq datasets. This viewpoint summarizes how utilization of these bioinformatic pipelines can benefit scRNA-seq studies, particularly in oncology wherein aneuploidy is both rampant and a hallmark of the studied disease. Awareness and use of these analytical pipelines will improve each field’s ability to understand the studied diseases. Authors are encouraged to attempt these aneuploid analyses when reporting scRNA-seq data, much like copy-number variants are commonly reported in bulk genome sequencing data.","PeriodicalId":342778,"journal":{"name":"Biocell : official journal of the Sociedades Latinoamericanas de Microscopia Electronica ... et. al","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aneuploidy: An Opportunity Within Single-Cell RNA Sequencing Analysis\",\"authors\":\"J. Delaney\",\"doi\":\"10.32604/biocell.2021.017296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell sequencing data has transformed the understanding of biological heterogeneity. While many flavors of single-cell sequencing have been developed, single-cell RNA sequencing (scRNA-seq) is currently the most prolific form in published literature. Bioinformatic analysis of differential biology within the population of cells studied relies on inferences and grouping of cells due to the spotty nature of data within individual cell scRNA-seq gene counts. One biologically relevant variable is readily inferred from scRNA-seq gene count tables regardless of individual gene representation within single cells: aneuploidy. Since hundreds of genes are present on chromosome arms, high-quality inferences of aneuploidy can be made from scRNA-seq datasets. This viewpoint summarizes how utilization of these bioinformatic pipelines can benefit scRNA-seq studies, particularly in oncology wherein aneuploidy is both rampant and a hallmark of the studied disease. Awareness and use of these analytical pipelines will improve each field’s ability to understand the studied diseases. Authors are encouraged to attempt these aneuploid analyses when reporting scRNA-seq data, much like copy-number variants are commonly reported in bulk genome sequencing data.\",\"PeriodicalId\":342778,\"journal\":{\"name\":\"Biocell : official journal of the Sociedades Latinoamericanas de Microscopia Electronica ... et. al\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocell : official journal of the Sociedades Latinoamericanas de Microscopia Electronica ... et. al\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32604/biocell.2021.017296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocell : official journal of the Sociedades Latinoamericanas de Microscopia Electronica ... et. al","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/biocell.2021.017296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

单细胞测序数据已经改变了对生物异质性的理解。虽然已经开发了许多单细胞测序方法,但单细胞RNA测序(scRNA-seq)是目前已发表文献中最丰富的形式。由于单个细胞scRNA-seq基因计数数据的不均匀性,对所研究细胞群体内差异生物学的生物信息学分析依赖于对细胞的推断和分组。从scRNA-seq基因计数表中可以很容易地推断出一个生物学上相关的变量:非整倍性,而不管单个基因在单细胞中的表现如何。由于染色体臂上存在数百个基因,因此可以从scRNA-seq数据集获得高质量的非整倍性推断。这一观点总结了利用这些生物信息管道如何使scRNA-seq研究受益,特别是在非整倍体既猖獗又被研究疾病的肿瘤中。了解和使用这些分析管道将提高每个领域了解所研究疾病的能力。在报告scRNA-seq数据时,鼓励作者尝试这些非整倍体分析,就像在大量基因组测序数据中通常报告的拷贝数变异一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aneuploidy: An Opportunity Within Single-Cell RNA Sequencing Analysis
Single-cell sequencing data has transformed the understanding of biological heterogeneity. While many flavors of single-cell sequencing have been developed, single-cell RNA sequencing (scRNA-seq) is currently the most prolific form in published literature. Bioinformatic analysis of differential biology within the population of cells studied relies on inferences and grouping of cells due to the spotty nature of data within individual cell scRNA-seq gene counts. One biologically relevant variable is readily inferred from scRNA-seq gene count tables regardless of individual gene representation within single cells: aneuploidy. Since hundreds of genes are present on chromosome arms, high-quality inferences of aneuploidy can be made from scRNA-seq datasets. This viewpoint summarizes how utilization of these bioinformatic pipelines can benefit scRNA-seq studies, particularly in oncology wherein aneuploidy is both rampant and a hallmark of the studied disease. Awareness and use of these analytical pipelines will improve each field’s ability to understand the studied diseases. Authors are encouraged to attempt these aneuploid analyses when reporting scRNA-seq data, much like copy-number variants are commonly reported in bulk genome sequencing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anti-proliferative effect of Annona extracts on breast cancer cells. Recent biomedical advances enabled by HaloTag technology Synergy of single-cell sequencing analyses and in vivo lineage-tracing approaches: A new opportunity for stem cell biology New paradigms in regenerative engineering: Emerging role of extracellular vesicles paired with instructive biomaterials Stem cells in intervertebral disc regeneration–more talk than action?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1