{"title":"基于仿真的任意不对称视网膜图像分析","authors":"Chad A. Oian, B. Rockwell, R. Thomas","doi":"10.2351/1.5118565","DOIUrl":null,"url":null,"abstract":"In cases where a laser source produces a pattern that is asymmetric on the retina, a modeling-based approach can be used to calculate a retinal thermal response to predict damage and make meaningful comparisons to exposure limit trends. The SESE (Scalable Effects Simulation Environment) model is a full 3D thermal finite-volume model that can simulate multiple independently controlled laser sources with unique wavelength, spatial profile, pulse duration, and power. The model is well suited to evaluate asymmetric sources since there is not an assumed axial symmetry and the spatial profile of the laser can be adjusted as a function of time. Several examples of asymmetric sources include multi-fiber bundle exposures, scanning beams, and scintillating sources. We use the SESE model to predict trends in retinal injury threshold for these cases and to help inform the laser safety community by providing estimates for safe and unsafe levels of exposure. We also introduce factors that inform hazard levels based on relative exposure conditions.In cases where a laser source produces a pattern that is asymmetric on the retina, a modeling-based approach can be used to calculate a retinal thermal response to predict damage and make meaningful comparisons to exposure limit trends. The SESE (Scalable Effects Simulation Environment) model is a full 3D thermal finite-volume model that can simulate multiple independently controlled laser sources with unique wavelength, spatial profile, pulse duration, and power. The model is well suited to evaluate asymmetric sources since there is not an assumed axial symmetry and the spatial profile of the laser can be adjusted as a function of time. Several examples of asymmetric sources include multi-fiber bundle exposures, scanning beams, and scintillating sources. We use the SESE model to predict trends in retinal injury threshold for these cases and to help inform the laser safety community by providing estimates for safe and unsafe levels of exposure. We also introduce factors that inform hazard levels based on ...","PeriodicalId":118257,"journal":{"name":"International Laser Safety Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation-based analysis of arbitrary asymmetric retinal images\",\"authors\":\"Chad A. Oian, B. Rockwell, R. Thomas\",\"doi\":\"10.2351/1.5118565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In cases where a laser source produces a pattern that is asymmetric on the retina, a modeling-based approach can be used to calculate a retinal thermal response to predict damage and make meaningful comparisons to exposure limit trends. The SESE (Scalable Effects Simulation Environment) model is a full 3D thermal finite-volume model that can simulate multiple independently controlled laser sources with unique wavelength, spatial profile, pulse duration, and power. The model is well suited to evaluate asymmetric sources since there is not an assumed axial symmetry and the spatial profile of the laser can be adjusted as a function of time. Several examples of asymmetric sources include multi-fiber bundle exposures, scanning beams, and scintillating sources. We use the SESE model to predict trends in retinal injury threshold for these cases and to help inform the laser safety community by providing estimates for safe and unsafe levels of exposure. We also introduce factors that inform hazard levels based on relative exposure conditions.In cases where a laser source produces a pattern that is asymmetric on the retina, a modeling-based approach can be used to calculate a retinal thermal response to predict damage and make meaningful comparisons to exposure limit trends. The SESE (Scalable Effects Simulation Environment) model is a full 3D thermal finite-volume model that can simulate multiple independently controlled laser sources with unique wavelength, spatial profile, pulse duration, and power. The model is well suited to evaluate asymmetric sources since there is not an assumed axial symmetry and the spatial profile of the laser can be adjusted as a function of time. Several examples of asymmetric sources include multi-fiber bundle exposures, scanning beams, and scintillating sources. We use the SESE model to predict trends in retinal injury threshold for these cases and to help inform the laser safety community by providing estimates for safe and unsafe levels of exposure. We also introduce factors that inform hazard levels based on ...\",\"PeriodicalId\":118257,\"journal\":{\"name\":\"International Laser Safety Conference\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Laser Safety Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2351/1.5118565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Laser Safety Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/1.5118565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation-based analysis of arbitrary asymmetric retinal images
In cases where a laser source produces a pattern that is asymmetric on the retina, a modeling-based approach can be used to calculate a retinal thermal response to predict damage and make meaningful comparisons to exposure limit trends. The SESE (Scalable Effects Simulation Environment) model is a full 3D thermal finite-volume model that can simulate multiple independently controlled laser sources with unique wavelength, spatial profile, pulse duration, and power. The model is well suited to evaluate asymmetric sources since there is not an assumed axial symmetry and the spatial profile of the laser can be adjusted as a function of time. Several examples of asymmetric sources include multi-fiber bundle exposures, scanning beams, and scintillating sources. We use the SESE model to predict trends in retinal injury threshold for these cases and to help inform the laser safety community by providing estimates for safe and unsafe levels of exposure. We also introduce factors that inform hazard levels based on relative exposure conditions.In cases where a laser source produces a pattern that is asymmetric on the retina, a modeling-based approach can be used to calculate a retinal thermal response to predict damage and make meaningful comparisons to exposure limit trends. The SESE (Scalable Effects Simulation Environment) model is a full 3D thermal finite-volume model that can simulate multiple independently controlled laser sources with unique wavelength, spatial profile, pulse duration, and power. The model is well suited to evaluate asymmetric sources since there is not an assumed axial symmetry and the spatial profile of the laser can be adjusted as a function of time. Several examples of asymmetric sources include multi-fiber bundle exposures, scanning beams, and scintillating sources. We use the SESE model to predict trends in retinal injury threshold for these cases and to help inform the laser safety community by providing estimates for safe and unsafe levels of exposure. We also introduce factors that inform hazard levels based on ...